SOFTWARE SUPPORT COST ESTIMATING MODELS:
A COMPARATIVE STUDY OF MODEL CONTENT
AND PARAMETER SENSITIVITY

THESIS

Kevin L. Brummert Philip R. Mischler, Jr.
First Lieutenant, USAF First Lieutenant, USAF

AFIT/GCA/LAS/98S-3

DTIC QUALITY INSPECTED 2

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY .

Wright-Patterson Air Force Base, Ohio

101 60018661

AFIT/GCA/LAS/98S-3

SOFTWARE SUPPORT COST ESTIMATING MODELS:
A COMPARATIVE STUDY OF MODEL CONTENT
AND PARAMETER SENSITIVITY
THESIS

Kevin L. Brummert Philip R. Mischler, Jr.
First Lieutenant, USAF First Lieutenant, USAF

AFIT/GCA/LAS/98S-3

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the authors
and do not reflect the official policy or position of the
Department of Defense, the U.S. Government, or the model developers.

AFIT/GCA/LAS/98S-3

SOFTWARE SUPPORT COST ESTIMATING MODELS:
A COMPARATIVE STUDY OF MODEL CONTENT

AND PARAMETER SENSITIVITY

THESIS

Presented to the Faculty of the Graduate School of Logistics
and Acquisition Management of the Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cost Analysis

Kevin L. Brummert Philip R. Mischler, Jr.
First Lieutenant, USAF First Lieutenant, USAF

September 1998

Approved for public release, distribution unlimited

Acknowledgments

This thesis would not have been possible without the support of some very key
and influential people. We would like to take this opportunity to say, Thank You.

First and foremost, we Would like to thank our famiiies for their support and
understanding during this thesis effort. Kevin thanks his wife, Holly, and daughter,
Danielle. Philip thanks his wife, Ashley, his daughter, Ami, and his son, Philip. We
understand and appreciate the sacrifices the families endured during this effort.

We also want to thank Professor Ferens, our advisor, Lt Col Giuliano, our reader,
and Maj Hauck, our reader after Lt Col Giuliano's retirement for their support and
guidance. 'S'hirley Tinkler from SMC, Sherry Stukes from MCR, Béb Havens from SPR,
Jim Otte from Price Systems, Karen McRitchie from Galorath Associates, Tony Collins
from Resource Calculations Inc., and Cheri Cummings from the Naval Center for Cost
Analysis were all very helpful in providing guidance for the various software estimating
models. Without their support, this thesis effort would not have been possible.

We would also like to give a special thanks to Lt Col Giuliano for his support and
belief in our capabilities to complete this thesis effort and the GCA program in general.

In closing, we would like to thank the entire 98S GCA class: Dave Bach, Rob
Bickel, John "G" Glover, Brian Kehl, Brad McDonald, John Odum, Lance Whitfill, and
Mike Wilson. Their support and stress relief options made our time at AFIT enjoyable.

Kevin Brummert
Philip Mischler

ii

Table of Contents

Page

ACKNOWIEAGIMENLS......cvvrrriircrrerereereciiniisies sttt en s s ii
LISt OF FLGUIESueueeeueeereceeaeseiessereeee e sess sttt be e esss s et shssestsnsassessasasasssasssnses v
- LISt OF TADIES ..oovieeeeeeeeeieteree e ees et ses s b sr e nost s ebesas s s s e s masbasran e s saneaseneons viii
ADSETACEoveeeveererteereeeesseesereesssseesnsst s st e s sesost et ot srsssneseseeasasasaassasss e seasnassnasnenssansasasaesas X
I IIETOQUCTION «ovvroeereeeeveesfeemnneesesesessssssssssssneesessasssasssassssssssassssssssssstanesessscssesssssesssssssssans 1
GENETAL ISSUE....eeeieerieeirrerereeteeerenesseessessessessneesessssssasastnessansssassssssssessseasassnessesonses 1
SPECIfIC PIODIEIMevvveeicriceicttt st 5
ReSEArch ODBJECLIVEcouereeieeeeecereitititiieiren sttt s r s st sn e sttt ssenis 6
Scope Of RESEAICH.....c.covvieiriiiieitiietce ettt 6
DEFINITIONS. ...ceveeeeeecreresierereeesesersessseseesasesessesesenssasnesessesssesertsentasessessessarsesessssensasaseanes 8
TRESIS SIUCLUTEevevereereeriieserereceesreseenetestostenesnssseesrssnenersessssssessssssssassssesnsannsssssnss 10

II. LIterature REVIEW......cvciererenrerieereeeereereescetesesseesessesssessessessessessesssasssessnsssessasssenessens 12
OVEIVIEW ...c.veeriieierrerreereesessessessassesarastensassessessssosenesassstossanssssesesssssssessanssasssssessassessnonses 12
Software SUPPOIT ISSUES......coeuruerinmnmiriuiiiriereee et stsess e 12
Software Support Characteristics.......coceerureruereresressessenennens seessasmrnersasnsarenaesasssesastes 20
Normalization EXplainedc.ceeeeeeeeiiriininniniiesieersnnersssssseee st seenesesnencenescnnens 27
Cost Model DeSCIIPLIONS......covevereruceecerecrisuniussisseeesesssssessssssssssssassasssassessesesssacanss 27
SEER-SEM.....otouiotiieriienerressensessesesessessssasessesassssssessssssssssssesssssssssssensesssassssssssans 28
SOFTCOST=00cooiireeereeereerreseraesetesssesesessessestessssssssssessessessesassessessssesasessanes 30
PRICE-=Sooeiteiieeerieererereesseseesessessssasaesssssssessentesentesssesssosssssssssnssnssansessensansans 32

SoftEst (A Windows version of REVIC) ...ttt 34

SPR KnowledgePLAN 2.0 (Update to Checkpoint)ccevvevererernesnsisnsnencncees 37
Database Summary of the MOdElScccoveviverniiiinmiiiiieetee et 39
SUIMIMATYveveireceneneeereserereesestssestsissessssssmessssssssessesessssasessssessasassssessessastosesessensonsasss 39

I MEthOQOIOZY ...cueeurerrerireeieneieeencenetesessassestsssa e seraesens s esssnasessasassansessssasneassasananssssses 41
OVETVIEWc.everiereereenereireseeseesssessessaessaensenassesesssssessasstosessansssssessnssssnssassessessassassessss 41
Independent Analysis (STEP 1) ..cccccvruiviriimiiniiiiieteteett s e 41
Validation and Concurrence (StEP 2)...ccceveereermrerirrensisiniiiisiesneeersessesssssessessassessens 43
TV, FINAINGS .voveveriieirieeien ettt sttt ess s se e ess e s s e sb e s s st sasseassnens 44
OVEIVIEW.....oveeeeeerrereeaereseetessssesasssessestestesansesssasstessestosssassasssssossssssanensessasssssessansansssarses 44
PRICE-=S....oooieteeeteeteteieteeseesse e sastesassesesss et seseesaenesssstssessssnssnsansssssessessensesessasasasasnes 45

iii

SEER-SEMootiiieerierereereveeseeseesestessessassasssssessessseseesessosssssostossesssonssssessensrnesssessanss 65
SOFTCOSTA00 .aeeeeeeeteereeieeeeievertsisesteeeesesses e sssaresessessesssstasassrnesassbesassasnesansesnanes 73
SOBIESL. «uvteueieieeereeriesreererseesessassesessessesstesaeessteasesatestasesatartosassassssasstessnasastessasasesans 79
KNOWIEAZEPLAN 2.0...cviiiieiiniieeceeeeraisiiteneatenesteree s s e s asnssstsss e s e esens 92
V. Conclusions and Recommendationscceeeerererrueerricinsiioneesseeinssssisessessnessesesees 111
OVervieW.....cceeverevirnninnnsd eeereaeeessseeeseeetreeeeataeseneeseseeeeneeeneete s e e st b e e b e s bR e e R s e b s e ernnas 111
CONCIUSION ..evevrenrerecreeeereeseesnteseesseesessesseestesasssstesssssternssnssssesssssnaessassnssssssasasssassanss 111
ReCOMMENAALIONS....ccuveerrerrrererrerriesreeseresaeee e seeeesssesstsessesasesssessansessssssnasssasasansesananens 114
Appendix A: Baseline Case Used for the Modelscoouurmemmeinicinecncncecnnn, 116
Appendix B: Checklist Used to Examine Cost ModelS........ccovuoerrieiinininenncnscnnennann. 117
Appendix C: PRICE-S REPOITS........c.crummiiemniererieieieneitnstenstesesseetescsscasscssnsesasanaes 119
Appendix D: SEER-SEM REPOTt.......cccuirivirmrriieiretitiietesnstststesae et cene s sncasseans 131
Appendix E: SoftCost-O0 REPOTLccovvvrierentrnieieiieerseteetesestcsaee e 133
Appendix F: SOftESt REPOIt....ccouruimimiiiieieieteete ettt 141
Appendix G: SPR Knowledge Plan 2.0 ..ot 149
RETETENCES .. .eeveteeeeeeeieeterreeteeseseessteste st eeseeaesseesassessssussbsssserteneestessasassasassnsstasaantasssanes 153
Vita 15! Lieutenant Kevin L. BIUMINETTc.cemerreeeenueienenesscesessssssescsescssesessasssessaseass 157
Vita 1% Lieutenant Philip R. MiSChIET, JI. c..vvrurucurceeemeiseeeecrencnsenemsssssinsssesssssessesans 158

v

List of Figures

Figure Page
1. Allocation of Systems and Programmer ReSOUrces..........ovveenirveneicencnnincsincnncnnnnes 3
2. Support Tasks Superimposed on the Software Development Phaseccccocccuvuicnss 15
3. AFOTEC Software Supportability Evaluation Areas..........ccoceeeeerenenncncncnescscncsennnacnns 16
4. Modeling Rework Costs from Defects ...t 17
5. Software Cost Estimation Accuracy Versus Phase........cccvvveencrinienneccienincenccnnenne, 18
6. Bathtub Curves for Hardware and SOftware..........cocovvvrueevmnmneinennnencceeeenccsenee 21
7. Variations in Internal Integration for CSCI 2 of the Baseline Casecccoceeerruencneee. 47
8. Utilization Variations Compared to Person Months for CSCI 2ouoeeeveivvcennnncnee 48
9. Platform Variations Compared to Person Months for CSCI 2ooveevenrerinincncnncne 49
10. Application Value Variations Compared to Person Months for CSCI 2................... 51
11. No. of Installation Variations Compared to Total Person Monthscccccevueiuunnen. 53
12. Growth Level Percentage Variations Compared to Total Person Months................. 53
13. E-Level Variations Compared to Total Person Months.........cccevvrimneeiivenconnnencnene. 55
14. Q-Level Variations Compared to Total Person Monthscccveeenenieancscscnicenenneee 56
15. GPROFAC Variations Compared to Total Person Months..........coeeeeevcnennecrennencs 57
16. EPROFAC Variations Compared to Total Person Months...........cccoeeeiiinin.in. 58
17. MPROFAC Variations Compared to Total Person Monthsceceeeeeeeuesrrmcesssees 59
18. Year Compared to Category Effort in Person Months.........coeimeiiieinncnnccninnnne. 61
19. SEER-SEM Separate Site Changesccccovierrrerrirmeninneienneeenesessnisisssessssessisaecnns 69
20. SEER-SEM Maintenance Growth Over Life Changes........ccccoeeeerneeeneciecencnnene. 70
21. SEER-SEM Annual Change Rate Changesococuvevueiminiirerineresennnsssencssassenenenes 70
22. SEER-SEM % to be Maintained Changes..........cccveereuireeiiniemnsiensnneneeieniessessnneseennnene 71

Figure Page

26.

23. SEER-SEM Maintenance Effort by Categoryccuvermiicieninecenineneeeencrneenne 71
24. SEER-SEM Maintenance Effort by Yeaf .. 72
25. SoftCost-O0 Sustaining ENgINeering........coceeeeevererrrsesiesesseerersnssnnsiensesasnssessessssennes 76

SoftCost-O0 Annual Change Trafficcoceemivericniniiinicinieceereeie e 76
27. SoftCost-00 20 Year Support Cost.......ccceverereierriniserierieniesenessessessesssssssseessesseses 77
28. Required Reliability Compared to Support Cost CSCI 1. 81
29. Analyst Capability Compared to Support Cost CSCI 1. 82
30. Product Complexity Compared to Support Cost CSCI 1 CSCI L 83
31. Required Reliability Compared to Support Cost CSCI 2.cueovrierioreiiiiiecnnnene 85
32. Requirements Volatility Compared to Support Cost CSCI 2.erveencciiiinaces 86
33. Analyst Capability Compared to Support Cost CSCI 2..................... ereeeeeeetesaeeaeenees 87
34. Programmer Capability Compared to Support Cost CSCI 2.cueeereerivineininincnene. 88
35. Annual Change Traffic Compared to Support Cost CSCI 2........cueuereeemnennieriennnen 89
36. SoftEst 20 Year of SUPPOIt COSES ...cccveveerermrrerrreriiisienisriniisnetessessesnesssssssnesesassesseses 91
37. Maintenance Personnel Staffing Compared to Total COSts.ccceeververereseninesinienas 93
38. Personnel Experience Compared to Total Costocvierieieeiinrenrenenneeeeeene 94
39. Personnel Education Compared to Total Cost.ccocevviviivinennniiinienreeeeeetenenees 95
40. Technology Replacement and Restructuring Planning..........cccecevevevrineenenccnieiennnne. 96
41. Field Maintenance Compared to Total Cost.ccovevvinrrniirinrnniinniensensereesneeenes 97
42. Customer Support Compared to Total Cost.......cccvivurinieineninieieeesieecesennne 98
43. Installation & Production Geography Compared to Total Cost 99
44. Long Range Product Stability Compared to Total Cost.cevuemeecveirecenccniniinnnes 100

vi

Figure Page
45. Five Year Cost COMPATISOM.ccvereereerceesssrsesisirseississesssssnsassnssssessessssssassossansasas 106

46. 20-Year Support Costs - a Comparison of the Models.........cccouveermeneienesecennnnc. 109

vii

Table Page
1. Examples of Maintenance ACtiVitiescvueieeereeeirresssnsesnssssiessicesininsccsesnceaenes 4
2. Research QUESHIONS.....c.coveueiruentieeerteiriiesissetesessesresee e se s ssaess e sestsssesssssasesessassenss 7
3. Cost Estimating MethodologIes..........coceruiuiimmiiereerinieieeineisesescessseessscncsensenencas 19
4. Software Supportability CheCKLiSt.......coviiiririeimeiereeeiie e ceseeecsntceanens 26
5. Model Database Legacyc.ccccecerveererumisissiessiieissesitessssesessssssssssessssssssassessassssaens 39
6. Software Support Estimate Atributecovveveiveriierieenncrcene et 39
7. Summary of Model EStIMAtes........ccvuruiririniiiniiininnininienisnnsissnesssseeesesnssessssasnsanes 44
8. Variations in Development Parameters for CSCI 2......uoumirorncnniierccenineen 46
9. Variations in Language Parameters for CSCI 2. 51
10. Support Effort in Person Months Broken out by Categories and Year.......c....ccec.... 60
11. Total Support Effort Represented in DOIIaArscoceveeeerieieininenneiininccceeciiacenns 60
12. PRICE-S Database COMPOSIHON «....cuvrumsrmesrusnisirinsisnsiinsisssisssssssssnss s sssesscanees 64
13. SEER-SEM Changes from Baseline.........ccovvimmieevenneninicninecinenen e 66
14. SEER-SEM Total Support Effort by Categoriescoeererreeeeieneciiinenienrcnacanens 72
15. SoftCost-O0O Development Input Parameter Changescveoeemeenieevenienicececnnee. 75
16. SoftCost-00 20-year Support EffOrt.......cccu i 77
17. SoftEst Parameter Changes and Effects on Support Costs CSCI 1ccoerriccnencne 84
18. SoftEst Parameter Changes and Effects on Support Costs CSCI 2........ccoeuiiennnne. 90
19. Maintenance Attribute Variations Compared to Total Costceevererecrenreennnae. 101
20. Base Code Attribute Variations Compared to Total Cost........ccceeeinenenenncrneccen. 104
21. Estimate OVerview by Category.ccoeverirmrimriicrieereneeeressssessssssesseeessseesessssese 106

List of Tables

viii

Table Page

22. SPR KnowledgePLAN Database COMPOSITION.cccveviremreennnnnnssisessasecscessunsenanes 107
23. 20-Year Support Costs - a Comparison of the Models.cccouerimrrirenenncicncnnncncs 108
24. Model Estimates Compared to Other Models in Percentage Terms..............ce.e.ee. 110

ix

AFIT/GCA/LAS/98S-3

Abstract

This research entailed a comparison of ﬁvé software estimating models:
PRICE-S, SEER-SEM, SoftCost-O0, SoftEst, and SPR KnowledgePLAN. The objective
was to research software support cost differences between the software models. This
research effort is a follow-up to the 1993 Coggins and Russell thesis, which concentrated
on software development cost. The following major question areas were addressed: (1)
How do the differences between the models impact the resulting cost estimates? (2) To
what degree can we explain and adjust for the differences between cost models?
(Coggins and Russell, 1993:ix).

The same hypothetical baseline test case used by Coggins and Russell in 1993
was used for this research effort. The baseline test case has three Computer Software
Configuration Items (CSCI), where CSCI 1 is composed of 50 thousand (K) Source Lines
of Code (SLOC) further subdivided into 2 Computer Software Components (CSC)
composed of 20K and 30K SLOC; CSCI 2 is a single component of 80K SLOC; and
CSCI 3 is a single component of 45K SLOC. All items were for flight avionics of a
manned aircraft.

The differences between the models significantly impact the resulting estimates.
Over the five models evaluated, a range of over $60 million occurred during a twenty
year support period. The researchers can explain the differences in the models due to the
different algorithms used, but were not able to normalize the models to achieve

equivalent estimates. The researchers feel a typical user will not be able to normalize

Ul

separate models and should, therefore, concentrate on learning one or two models in
detail. Different models are more appropriate depending on the task or project being

estimated.

xi

SOFTWARE SUPPORT COST ESTIMATING MODELS:
A COMPARATIVE STUDY OF MODEL CONTENT

AND PARAMETER SENSITIVITY

1. Introduction

General Issue

The computer has greatly enhanced our life and has given us the ability to transfer
data/information across the world in literally a matter of seconds with a few keystrokes.
PCs have become abundant in the surroundings that we live in and can be found in just
about everyone’s life. Whether it is in an individual’s office, an elementary classroom, or
the family recreation room, the PC has directly changed the way in which we lead our
lives. In this same train of thought, the Department of Defense (DoD) has seen the use
and role of the computer increase in carrying out missions supporting our national
security interests énd in preserving America’s freedom. The DoD uses computer systems
to control some of the most advanced weapon systems known to man. These include, the
B-2 Stealth Bomber, the F-117A Stealth Aircraft, and the fighter of the future, the F-22
Raptor, to name a few. It has been estimated that the F-22 will have close to 7 million
lines of cod;a in the software system (Bischoff, 1991). This code will provide
approximately 80% of the functionality of the aircraft (Fain, 1992). With so much of the
functionality being built into the software of the F-22, it has become evident that the DoD
is now depending on the usage of software in new weapon systems to provide the
leverage that is needed to win wars, increase the warfighter’s capability, allow more to be

done with less, and to provide the flexibility in adjusting to unknown threats.

Software has become a crucial part and controlling aspect of most civilian and
military systems. Civilian and military organizations have found that the best way to
adapt existing systems to the ever changing requirements that they are faced with is to
change the software that is running on the their systems. It's estimated that the DoD
spends over $25 billion on software annually (Ferens, 1991:1). Over 60%, or $15 billion,
of the expenses would be spent on software support alone (Ferens, 1991:1). The DoD is
not the only organization with this type of expenditure support ratios. Hewlett Packard
(HP) estimates 40-60% of production cost were directly related to maintenance alone
(Coleman, 1994:44-49).

When the DoD looks at total Life Cycle Cost (LCC), over 70% of the LCC of
softwére occurs in software logistics support (Ferens, 1992:4). Many times people hear
the word "support" and simply think about "maintenance." "This is a misnomer, since
software support involves much more than error correction" (Ferens, 1992:4). Software
support normally contains three niain areas: corrective support (performed to identify
and correct software failures, performance failures, and implementation failures),
adaptive support (performed to adapt software to changes in the data requirements or the
processing environments), and perfective support (performed to enhance performance,
improve cost effectiveness, improve processing efficiency, or improve maintainability).
The interesting thing about the types of maintenance and associated percentages with a
support effort is that the largest portion of the supportability being performed does not
involve identifying and fixing problems with the software (Martin, 1983:29). Figure 1

illustrates the types of support and percentages.

Allocation of Systems and Programmer Resources

Corrective

20%
Perfective
55%
Adaptive
25%

(Martin, 1983:29)

'Figure 1. Allocation of Systems and Programmer Resources

It is assumed within the three categories of maintenance costs that support (the
activities used to explain system capabilities, to plan for future support, and to measure
performance) can be found among the three main categories and is not a separate
subcategory by itself (Martin, 1983:22). Ruetter further subdivided the three main
categories of support into the following categories: corrective - corrective and
emergency; adaptive - upgrades, changes in conditions and growth; and perfective -
growth and enhancements (Martin, 1983:22). Table 1 illustrates Ruetter’s categories.
Note that gr.owth of the software system was found in both adaptive and perfective
maintenance activities and can be a major contributor to cost overruns.

Whether software is currently being developed or not, it is always in the process

of being continually updated. Current trends show software development and support

Table 1. Examples of Maintenance Activities

Swanson’s
Categories Ruetter’s Categories
Corrective
Maintenance
Correction to fix a switch
Correction of failure to test for all possible conditions
Correction of failure to process the last record in a file
Adaptive
Maintenance
Implementation of a data-base management system (DBMS) for an
Existing application system.
Modification of designation codes from three characters to four
Characters.
Tuning a system to reduce response times.
Converting the MRP system from batch to on-line operation.
Adjustment of two programs to make them use the same record
structures.
Modification of a program to make it use a different terminal.
Enhancement
Maintenance
Modification of the payroll program to incorporate a new union
settlement.
Addition of a new report in the sales analysis system.
Improvement of a terminal dialogue to make it more user friendly.
Addition of an extra column to a report.
Adjustment of a program for printing bank statements to use a new
design of preprinted stationery.
Improvement of graphics output
Adding an on4ine HELP command.
Improvement of query processing capabilities to examine more types of
data.
Adding facilities required by auditors.

(Martin 1983:21)

cost for systems generally exceed the cost of the hardware system (Boehm, 1991:18).

Past research has shown that changes in user requirements cause approximately 41% of

the support costs, while hardware changes have only accounted for approximately 10%

(Basset, 1995). A 1988 study shows software costs are predicted to grow at 12% per year

(Boehm, 1988:1462). The majority of the increase in supportability costs has been

-

associated with a decrease in the productivity, with productivity decreases of 40:1 being
reported (Boehm, 1981). These numbers lead one to believe that software support is the
largest life cycle cost; and the ability to be successful in the future is going to be
dependent on the manner in which software is supported “cost-effectively”.
The ability to continuously support our major software-intensive systems is a
paramount mission requirement. Supportability is critical because there is always
an inevitable need to correct latent defects, modify the system to incorporate new
requirements, enhance the existing system to add capability, and alter it to
increase performance. The ability to accommodate changes is an integral part of
major software-intensive systems requirements. Unfortunately, when we have
fielded insupportable systems, we have often had to expend the considerable time
and funds necessary to provide the required support or we have had to abandon
them altogether. We learned that it is far more cost-effective to address
supportability as we define requirements, design the system, and plan for its
operational life. (Department of the Air Force, 1996:11-1)
Thus, what is needed is to “reduce the risk of acquiring, managing, and maintaining
software-intensive systems by ensuring that they can be modifiable, expandable, flexible,
interoperable, and portable - i.e., supportable” (Department of the Air Force, 1996:11-1).
The United States is not the only country having problems with software. In
Canada, "Little attention has been paid to software maintenance cost despite the fact that,
over the life of the product, maintenance costs may be significantly higher than
development costs. Despite the fact that maintenance is expensive, little or no attention is
paid to the life cycle costing of software" (Vigder, 1994:40).
Specific Problem
No document or study has focused on or concentrated solely on the software
support components of the various software cost models used by the DoD. Most

documents or studies concentrate on the software development issues, without going into

a lot of detail about the support features of those same models. The purpose of this

research is to provide one document that thoroughly explains the differences in the
software support area for the five selected models. The differences would include:
unique support inputs, development parameters which affect support, maintenance
definitions, time span covered, and underlying assumptions in model
- equations/algorithms.
Research Objective

The objective of this thesis is to develop a consolidated document which
highlights the differences in definitions, assumptions, and methodologies used by the
PRICE-S, SEER-SEM, SoftCost-00, SoftEst, and SPR KnowledgePLAN cost
- models and examines the impact of these differences on the resulting estimates as related
to software support. To achieve this objective, the questions in Table 2 must be
investigated.
Scope of Research

This research effort was undertaken to support the Air Force Cost Analysis
Agency (AFCAA). Specifically, AFCAA requested a technical analysis of the
PRICE-S, SEER-SEM, SoftCost-O0, SoftEst, and SPR KnowledgePLAN software
support cost estimating models. As a result, only the given five models were chosen for
this analysis, even though other models exist and are used by other various organizations
within the DoD, they were not addressed within this research effort.

This effort did not research the estimating accuracy of the models. "Research was
conducted with the intent of explaining the differences between the models and
examining the impact of these differences on the resulting estimates. Cost analysts

should consider the strengths and weaknesses of each model as well as availability of

information, time constraints, and the nature of the proposed project prior to selecting a

specific model" (Coggins and Russell, 1993:4).

Table 2. Research Questions

(1) What are the unique input parameters that directly affect the support
costs?

(2) What is the estimating methodology being used?

(3) What are the underlying algorithms?

(4) What is the underlying basis for the parameter value?
(5) Issupport broken out into support sub-categories?

(6) What types of sub-categories are included for example: Preventive,
Adaptive, and Corrective?

(7) What time span is the maintenance/support option covering for the
various models (5-20)?

(8) Does a change in development method or language affect support
costs?

(9) What is the recommended estimating range?

(10) What type of data/database was the current model calibrated to?
(11) What differences exist between the cost models?

(12) How do these differences impact the resulting cost estimates?

(13) To what degree can we explain and adjust for the differences
between the various cost models?

(Parallels Coggins and Russell, 1993:4)

Definitions

The following definitions are provided to insure a mutual understanding of key terms and
concepts used in this thesis.

Adaptive. Alters existing software to address new requirements (enhancement) or new
platforms (Tilley, 1996:7.2).

Algorithm. A mathematical set of ordered steps leading to the optimal solution of a
problem in a finite number of operations (Stewart, 1987:557).

Analogy. An estimating methodology that uses actual cost of a similar past or present
system and adjusts for complexity, technical, or physical differences to arrive at an
estimate for the new system (Analytical Science Corporation, 1986:3.4.2).

Corrective. Removes faults or errors which escaped detection during development and
testing of a system, or that were introduced during previous maintenance activities
(Tilley, 1996:7.2).

Cost Estimating. "The art of collecting and scientifically studying costs and related
information on current and past activities as a basis for projecting costs as an input to the
decision process for a future activity." (Schwenke, 1992).

Cost Model. A tool consisting of one or more cost estimating relationships, estimating
methodologies, or estimating techniques and used to predict the cost of a system or its
components (Analytical Science Corporation, 1986:A-23).

CSCI. CSC, and CSU. Large software development efforts are generally broken down
into smaller, more manageable entities called computer software configuration items
(CSCls). Each CSCI may be further broken down into computer software components
(CSC) and each CSC may be further broken down into computer software units (CSU)
(Department of Defense,1988: B-1 4).

Expert Opinion. An estimating methodology which queries technical experts and users
regarding the estimated cost of a proposed system (Stewart, 1987:581).

Function Points. A software measurement technique presented in October 1979 by A.J.
Albrecht, which considers the visible external aspects of software consisting of five
items: inputs, outputs, inquiries by user, data files updated by application, and interfaces
to other applications (Jones, 1995:2).

Hardware. Consists of the physical and electrical components of a computer system
including items such as circuits, disk drives, wiring, and associated peripherals involved
in the actual functions of the computer (SASET, 1990).

Normalization. The process of rendering constant or adjusting for known differences
(Stewart, 1987:594).

Parametric Cost Model. A model that employs one or more cost estimating relationships
for measurement of costs associated with the development of an item based on the
project's technical, physical, or other characteristics (Stewart, 1987:596).

Perfective. Improving software attributes such as performance, memory usage, and
documentation. Improves system without changing the basic system functionality
(Tilley, 1996:7.2).

PRICE-S. Programmed Review of Information for Costing and Evaluation - Software.
A commercial software cost-estimating model distributed by PRICE-Systems L.C.C..

Reengineering. Rebuilding a piece of software to suit some new purpose (to work on
another platform, to switch to another language, to make it more maintainable, etc.);
often preceded by reverse engineering. Examination and alteration of a subject system to
reconstitute it in a new form. Any activity that improves one's understanding of software,
or prepares or improves the software itself for increased maintainability, reusability, or
evolvability (VanDoren, 1997).

Restructuring. Transformation of a program from one representation to another at the
same relative abstraction level, usually to simplify or clarify it in some way (e.g., remove
GOTOs, increase modularity), while preserving external behavior (VanDoren, 1997).

Reverse Engineering. The process of analyzing a system's code, documentation, and
behavior to identify its current components and their dependencies to extract and create
system abstractions and design information. The subject system is not altered; however,
additional knowledge about the system is produced. Redocumenting and design
recoveries are techniques associated with reverse engineering. Software complexity:
some measure of the mental effort required to understand a piece of software (VanDoren,
1997).

SEER-SEM. System Evaluation and Estimation of Resources - Software Estimation
Model. A commercial software cost estimating model developed by Galorath Associates,
Incorporated.

SoftCost-00. A commercial software cost estimating model developed by Resource
Calculations Inc.

SoftEst. Software Estimator - Currently, a windows version of REVIC, a non-proprietary
parametric cost estimating model based on Dr. Barry Boehm’s Constructive Cost Model
(COCOMO).

Software. The combination of computer programs, data, and documentation which
enable computer equipment to perform computational or central functions (SASET,

1990).

Software Development Cycle. The software development cycle is typically broken into
8 phases: (1) System Requirements Analysis and Design, (2) Software Requirements
Analysis, (3) Preliminary Design, (4) Detailed Design, (5) Code and CSU Testing, (6)

CSC Integration and Testing, (7) CSCI Testing, and (8) System Testing. Software
maintenance is often considered the ninth phase in this sequence (Department Of

Defense, 1988).

Software Maintainability. Some measure of the ease and/or risk of making a change to a
piece of software. The measured complexity of the software is often used in quantifying
maintainability.

Software Support. Software does not break or wear out; support refers to corrective,
adaptive, and perfective changes to software. Changes result when correcting software
errors (corrective), responding to changing data or processing requirements (adaptive)
and improving features through enhancements (perfective) (Ferens, 1992:4).

Source Line of Code (SLOC). For purposes of this research effort, SLOC is defined as
all lines of executable and non-executable code with the exception of embedded
comments (Coggins and Russell, 1993:7).

SPR KnowledgePLAN. A commercial software cost estimating model developed by
Software Productivity Research.

Translation. Conversion of a program from one language to another, often as a
companion action to restructuring the program (VanDoren, 1997).

Thesis Structure

The remainder of this research effort is directed at answering the investigative
questions. The information gained by answering these questions will allow the
researchers to compile a consolidated document, which highlights the differences
between the support area of the software cost models and examines how these differences
impact the cost estimates. Chapter II, Literature Review, reviews recent publications in
the area of software support and describes each of the cost models selected for review.

Chapter III, Methodology, explains how the research effort was structured to gather

10

information needed to answer the investigative questions. Chapter IV, Findings, analyzes
the information obtained and answers the investigative questions. Chapter V,
Conclusions and Recommendations, draws an overall conclusion regarding the
differences between the software support areas of the cost models based on the literature
review and information obtained and analyzed in the preceding sections of the thesis.
Chapter V also identiﬁes areas where further research may be warranted (Coggins and

Russell, 1993:7-8).

11

I1I. Literature Review

Overview

This chapter examines recent publications, issues, and research in the field of
software support. The chapter identifies issues which impact the accuracy of software
support cost estimates, reviews estimating methodologies used for software support,
explains a normalization technique for comparing different software cost models, and
provides a summary of the estimating models used for this research effort.

Software Support Issues

"Software maintenance is a much maligned and misunderstood area of software
engineering" (Pigoski, 1994). "There is seelhingly insatiable demand for more
functionality, interfaces that are easier to use, faster response, and fewer defects”
(Stutzke, 1996:1). "In the software community, it is the software maintainer who gets the
thankless job of fixing or enhancing someone else's program" (Arthur, 1997). "The
Department of Defense and its contractors have arrived at a software crisis" (Brown,
1997) or as it has been most recently quoted as the “maintenancé crisis” (Department of
the Air Force, 96:11-5). These statements demonstrate the current situation of the DoD
software community as of today. Discussed now are some of the important issues for

software maintenance.

Software Support Risk. The cost to maintain a software product is from 60%-

80% of total life cycle costs (Engle, 96). Software support is likely to be the largest life
cycle cost driver and represents the major source of system risk that the DoD faces in
major software acquisitions. Unforeseen requirements changes still carry high risk if

they affect the old parts of the system. Cost and risk of maintenance of older systems are

12

further exacerbated by a shortage of suitable maintenance skills, analysts and
programmers that are not trained to deal with these systems. “Industry wide, it is claimed
that 75%-80% of all operational software was written without the discipline of structured
programming” (Coleman, 1995). This would lead one to believe that there is a
tremendous amount of risk in supporting the given software systems and in attempting to
estimate the costs of the support effort.
Impacts to Accuracy. "On most projects, development and maintenance phases are
handled as two separate contracts. This creates an artificial division in the life cycle that
makes it easy to overlook the costs of maintenance” (Engle, 1996: slide 37). Historically,
the software life cycle has usually focused on development, but the majority of costs
occur in the operational lifetime, so maintenance issues should be reflected in
development practices (VanDoren, 1997:1). Movements are being made to try to
improve the software support problem. DoD 5000.2-R recommends that "support
concepts for new and modified systems shall maximize the use of contractor provided,
long-term, total life-cycle logistics support" (Maibor, 1997:3.3.7).

The major problem encountered by maintenance organizations when they

try to arrive at accurate software estimates is the issue of requirements

creep. Maintenance organizations are frequently calendar driven. Given a

set of change requests and a delivery date, the organization estimates,

which change requests, can be completed by the scheduled release date.

However, during the course of the maintenance work there is a great

temptation to add new change requests to the scheduled release without

modifying the corresponding release date. This causes a great deal of

frustration as the users do not get the promised changes, and developers

are required to work to impossible schedules trying to meet the scheduled

release as originally planned while including functionality not anticipated

when the original schedule was created. The second problem with

maintenance estimating is the large amount of overhead that is often

associated with making a relatively small change. Typically, each change

request is allocated to a designer to perform an impact analysis, which
includes a cost estimate and a description of the impact on the design of

13

the system. For minor changes, the effort to actually perform the estimate

is most of the cost of designing and coding the change. If the designer has

opened the source code and determined how the change is to be

implemented in order to perform the estimate, most of the work of
designing and coding is complete before it has been determined if or when

the change is to be implemented. (Vidger, 1994:41)

Development factors affecting support. Software Support is different from software
development in that a developer has a clean slate to work from in developing the software
system. A person who performs software support, however, has to work with a product
that has already been developed, has an existing infrastructure from which it was built
from, and has given constraints built into it by the developer. Support and development
are similar in the phases that are taken to arrive at the newly developed or updated
product. “Support is the same as development because the maintainer must perform the
same tasks as the developer, such as define and analyze user requirements, design a
solution (within the constraints of the existing solution), convert that design into code,
test the revised solution, and update documentation to reflect changes” (Department of
the Air Force, 96:11-4). Figure 2 illustrates how support tasks correspond to and mirror
the development process.

“So much of a system’s cost incurred during its operational lifetime that
maintenance issues have become more important and, arguably, this should be reflected
in the develbpment effort” (VanDoren, 1997). Therefore, the DoD needs to address the
acquisition of software systems from a total life cycle perspective and not just solely on
the development costs alone. Developing software that is easily supportable is one of the
most important items in the equation for software success. “Process improvement

programs have been shown in the report to reduce development costs and rework costs,

as well as improve productivity, cycle time and quality” (McGibbon, 1996).

14

Updating _— |

documentation
(5%)

Requirements

Reviewing
documentation
(5%)

Understanding
the product
(30%)

Testing
and
debugging

undesign,
redesign

Implementation

(Glass, 1992)

Figure 2. Support Tasks Superimposed on the Software Development Phase
A reduction of software support costs and the ability to streamline future investments will
ultimately be the result of employing tools and techniques to effectively develop and
maintain software systems. The past trend in software acquisition has been for the
developer to build the program without advice or input from the individuals who will
support the system. Once deployed, the software program is passed on to the support
personnel who are left with the problem of how best to support the software. There are
numerous factors within the development effort that affect the magnitude of the software
support costs. These factors include software design, documentation, coding standards,
and testing. ” The individuals or organization that is responsible for developing the
software has to make a conscious decision to follow development practices that will
allow the software system to be supported. It is when a development team is faced with
schedule and cost constraints that the support factors within the development effort are
often ignored. Another issue is the state of completeness that a system or program is at

before it is ultimately turned over to the support personnel, who will then oversee the

15

operational capability of the system for the remainder of the system’s lifetime. At times,

an incomplete system may be turned over to the operational user due to the given cost
and schedule constraints that the developer was faced with during the development effort.
This leaves the first maintenance task to be a task of completing the unfinished system

(Vidger, 1994:40). Figure 3 illustrates software supportability evaluation areas.

SOFTWARE
SUPPORTABILITY

Software Spare Computer

Life Cycle Computing Maintainability Support
Process ~ Capacity Resources
- Project - Timing - Documentation - Personnel
Management - Sizing - Source Listings - Equipment
- Configuration : - Implementation - Facilities
Management

(Department of the Air Force, 1996)

Figure 3. AFOTEC Software Supportability Evaluation Areas

Some techniques are being employed today to reduce the amount of support cost
required. A Maintainability Index (MI) is being tested (Welker, 1995). "Measurement
and use of the MI is a process technology, facilitated by simple tools, that in
implementation becomes part of the overall development or maintenance process. These
efforts also indicate that MI measurement applied during software development can help
reduce life cycle cost (VanDoren, 1997). Software Process Improvement (SPI) programs
are being used which concentrate on "the detection and removal of software defects at or
near the point of insertion of the defect" (McGibbon, 1996). Figure 4 indicates the

benefits of finding a defect early in the development process. It is evident that, if the

16

defect is not caught until late in the process (“maintain” in Figure 4) the repair cost can
be 100 times what would be required if the defect was found earlier in the design stages
(McGibbon, 1996). This phenomenon is a key driver in effecting software support cost.

Oklahoma City Air Logistics Center’s Aircraft Software Division (LAS) has achieved a

. 90% defect reduction rate and a 26% average maintenance cost reduction using SPI,

mainly driven by analytical procedures based on the Software Engineering Institute's

(SEI) Capability Maturity Model (CMM) (Belcher, 1996:1).

t t t 1
—p DESlGﬁ-——)- CODE —pi TEST P MAINTAIN -—P~

s

Errors Induced
ety — 1X—p «— 10X—><+— 100X —

(McGibbon, 1996)
Figure 4. Modeling Rework Costs from Defects

At Tinker AFB, a return on investment of 6.35:1 was achieved from
improvements recommended after their first Capability Maturity Model (CMM)
appraisal. The key attributes associated with this success were the leadership portrayed
by senior management, a ;ecognition from everyone that process improvement is their
job, and the ability to have visibility into progress. The researchers believe these same
attributes would also affect the support cost. The CMM is seen as an excellent model of
process changes that can be used to attain product improvement (McGibbon, 1996:9).

All of the changes occurring in the software community place a cost estimator in a very

17

difficult position. An entire estimate, development through support, is required early in a
program before all the goals and functionality of the software is known (Stutzke, 1996:1).
Even when the top-level software design has been defined, the typical accuracy for the
estimated schedule and effort has only been found to be within 25% of the final system

costs (Boehm 81). Figure 5 shows how the accuracy of an estimate may be affected.

Classes of people, datg

sources tg support EXAMPLE SOURCES OF
Query types, data loads, UNCERTAINTY,
intelligence-terminal & MAN-MACHINE
- tradeoffs, response times \INTERFACE SOFTWARE
internal data /
structure, buffer
handling techniques Detailed scheduling
algorithms, error
3 andling
2 Programmer .
< 2x = nderstanding of
B s /:pecifications
2 1.25x =]
[+ X
0.8x =
g 0.67x ==
=
S L 05x =
W
[
consEpT oF PRELUSINARY
OPERATION SPECIFICATION DETAILED ACCEPTED
0.25x=1 REQUIREMENTS N SOFTWARE
1 A SPECIFIGATIONS A SPECIFICATION ~N
FEASIBILITY pans AND PRODUCT PRODUCT DEVELOPMENT
REQUIREMENTS DESIGN DESIGN AND TEST

PHASE AND MILESTONES

(Boehm, 1981)
Figure 5. Software Cost Estimation Accuracy Versus Phase
Estimating Methodology. The estimator has a choice of the type of an estimate, but must
understand the estimate is only as good as the inputs used. Table 2 illustrates the
estimating methodologies available for the estimator to use. Price to Win and Parkinson
estimates are not considered options from the DoD perspective due to the integrity issues

involved. Boehm also states Price to Win and Parkinson methods are not sound cost

estimates and are unacceptable (Boehm, 1981:334).

18

Table 3. Cost Estimating Methodologies

Method Description

Provide one or more algorithms that produce a software cost
Parametric/ estimate as a function of a number of variable which are
Algorithmic Models considered to be major cost drivers

Involves consulting one or more experts, perhaps with the aid
Expert Judgment of an expert-consensus mechanism such as the Delphi

technique

Involves reasoning by analogy with one or more completed
Analogy projects to relate their actual costs to an estimate of the costs of

a similar new project
The principle that work expands to fill the available volume is

Parkinson invoked to equate the cost estimate to the available resources
Price to Win The estimate is equated to the price believed necessary to win
the job
An overall cost estimate for the project is derived from global
Top-Down properties of the software product. The total cost is then split

among the various components

Each component of the software job is separately estimated,
Bottom-Up and the results are aggregated to produce an estimate for the
overall job

(Boehm, 1981:329-330) (Marzo, 1997:9)

Boehm states that all estimating techniques have strengths and weaknesses and
may cémplement one another, but none is better than the other from all aspects (Boehm,
1981:334). The bottom-up approach cannot be done "until there is a well-defined design
and the nature and size of the components are known" (Wellman, 1992:31). The top
down approach may overlook minor details and may also partition some cost to the
wrong components. Expert judgment may be biased by the expert and can only be as
accurate as the expert’s knowledge allows. The analogy approach is only feasible when a
similar program or project exists. Parametric/algorithmic models "are often unstable, in
that small changes in certain sensitive input parameters can result in substantial changes
in cost and schedule" (Ferens, 1996:29). Stutzke points out that, "No single estimating

method is suited for every type of project” (Stutzke, 1996:20).

19

Software support costs are normally estimated by the parametric/algorithmic
method. The main drivers pushing the use of parametric/algorithmic models are the time
span for completing an estimate is normally fairly short, and the estimate is required very
early in a program when detailed knowledge is not available (Ferens, 1996:29). Both of

. these factors favor parametric/algorithmic models, since the models allow analysts to
generate quick estimates with limited inputs (Marzo, 1997:10). The parametric/
algorithmic method is not the only technique used in the DoD. When more detail is
known about the system and support environment, the bottom-up approach becomes

more commonly used.
Software Support Characteristics
Software Support Phases. DoD systems have a long life span in comparison to
commercial software systems. Over this long-term life span, the system will faces
numerous changes from the point of initial deployment to the retirement of the system.
As the software is supported and goes through the various support phases, the system
begins to show some form of design entropy as the number of modifications to the
system becomes increasingly large. As the system ages in time, the complexity of the
system becomes greater and the ability to understand the conceptual underpinnings of the
system becomes harder as time passes with the software being continually modified. The
system often becomes fragile and brittle with the cost to accomplish changes increasing.
While software does not wear out in the physical sense, it does
deteriorate! There is an astounding difference when the software failure
rate is superimposed on the bathtub curve. Like hardware, new software
usually has a fairly high failure rate until the bugs are worked out. At
which point, failures drop to a very low level. Theoretically, software
should stay at that low level indefinitely because it has no tangible

components upon which the forces of the physical environment can play.
However, after software enters its operational life, it undergoes changes to

20

correct latent defects, to adapt to changing user requirements, or to
improve performance. These changes make the software failure rate curve
steadily begin an upward journey. Hardware deteriorates for lack of
maintenance, whereas software deteriorates because of maintenance.
(Glass, 1992)

By making changes, software maintainers often inadvertently introduce

“side-effects” causing the defect rate to rise. Figure 6 illustrates the rising failure

rate over time.

>

Hardware

=== Software (in theory)
s Software (in practice)
Change
Change Change
1 Chaznge Ch ang eChinge 5 6

me>ImMIuCr—>»m

Software (in theory)

T e — - — —— AR, W S W A S—— . S— S—

(Department of the Air Force, 1996)
Figure 6. Bathtub Curves for Hardware and Software

The following phasing information on pages 21-23 is extracted from VanDoren,
Maintenance of Operational Systems —An Overview, 1997: 3-4.

Phase I: The development or pre-delivery phase, when the system is not yet operational.
Most of the effort in this phase goes into making Version One of the system function.

But if total life cycle costs are to be minimized, planning and preparation for maintenance
during the development phase are essential. Most currently operational systems did not
receive this attention during development.

Requirements traceability to code. Requirements are the foundation of a system,
and one of the most common faults of an operational system is that the
relationship between its requirements and its code cannot be determined.
Recovering this information for a system after it goes operational is a costly and
time-consuming task.

21

Documentation and. its usefulness in maintenance. The ostensible purpose of
documentation is to aid in understanding what the system does, and (for the

* maintenance programmer) how the system does it. There is at least anecdotal
evidence that '

- Classical specification-type documentation is not a good primary source of
information for the maintenance programmer looking for a problem’s origin,
especially since the documentation is frequently inconsistent with the code.

- The most useful maintenance information is derived directly and automatically
from the code; examples include structure charts, program flow diagrams, and
cross-reference lists. This suggests that tools that create and maintain these
documentation forms should be used during development of the code, and
delivered with it.

The complexity of the software. If the software is too complex to understand
when it is first developed, it will only become more complex and brittle as it is
changed. Measuring complexity during code development is useful for checking
code condition, helps in quantifying testing costs, and aids in forecasting future
maintenance costs.

The maintainability of the software. This is perhaps the key issue for the
maintainer. The ability to measure a system’s maintainability directly affects the

ability to predict future costs and risks.

Phase 2: The early operational phase, when the delivered system is being maintained and
changed to meet new needs and fix problems. Typically the tools and techniques used for
maintenance are those that were used to develop the system. In this phase, the following
issues are critical:

In a preventative maintenance regime, use of these types of measures will help establish
guidelines about how much complexity and/or deterioration of maintainability is
tolerable. If a critical module becomes too complex under the guidelines, it should be
considered for rework before it becomes a problem. Early detection of problems, such as
risk due to increasing complexity of a module, is far cheaper than waiting until a serious
problem arises.

A formal release-based maintenance process that suits the environment must be
established. This process should always be subject to inspection, and should be revised
when it does not meet the need.

The gathering of cost data must be part of the maintenance process if life cycle costs are
to be understood and controlled. The cost of each change (e.g., person-hours, computer-
hours) should be known down to a suitable granularity such as phase within the release
(e.g., design, code and unit test, integration testing). Without this detailed cost
information, it is very hard to estimate future workload or the cost of a proposed change.

22

Phase 3: Mature operational phase, in which the system still meets the users’ primary
needs but is showing signs of age. At this point, the code has not been rewritten en masse
or reverse engineered to recover design, but the risk and cost of evolution by
modification of the system have increased significantly. The system has become brittle
with age. It may be appropriate to assess the system's condition.

- The incidence of bugs caused by changes or "day-one errors" (problems that existed at
initial code delivery) is rising, and the documentation, especially higher-level
specification material, is not trustworthy. Most analyses of changes to the software must
be done by investigating the code itself.

- Code "entropy" and complexity are increasing and, even by subjective measures, its
maintainability is decreasing.

- New requirements increasingly uncover limitations that were designed into the system.

- Because of employee turnover, the programming staff may no longer be intimately
familiar with the code, which increases both the cost of a change and the codes entropy.

- A change may have a ripple effect: Because the true nature of the code is not well
known, coupling across modules has increased and made it more likely that a change in
one area will affect another area. It may be appropriate to restructure or reengineer
selected parts of the system to lessen this problem.

- Testing has become more time-consuming and/or risky because as code complexity
increases, test path coverage also increases. It may be appropriate to consider more
sophisticated test approaches.

- The platform is obsolete: The hardware is not supported by the manufacturer and parts
are not readily available; the COTS software is not supported through new releases (or
the new releases will not work with the application, and it is too risky to make the
application changes needed to align with the COTS software).

Phase 4: Evolution/Replacement Phase, in which the system is approaching or has
reached insupportability. The software is no longer maintainable. It has become so
"entropic" or brittle that the cost and/or risk of significant change is too high, and/or the
host hardware/ software environment is obsolete. Even if none of these is true, the cost
of implementing a new requirement is not tolerable because it takes too long under the
maintenance environment. It is time to consider reengineering

When tasked with maintenance responsibility of legacy software
which has become technologically obsolete, has deteriorated through years
of changes, or must be changed anyway to work with new hardware or
other software, it may be cost effective to re-engineer it. This involves
systematic evaluation and alteration of an existing system to reconstitute it

(or its components) into a new form or converting it to Ada to perform
within a new operational environment, to improve its performance, or to
reduce maintenance costs. This process can combine several sub-
processes, such as reverse engineering, restructuring, re-documentation,
forward engineering, or re-targeting. (Department of the Air Force,
1996:11-1)

Preventative maintenance approaches. The approaches listed below are taken directly
from VanDoren, Maintenance of Operational Systems —An Overview, 1997: 5-6. These
approaches represent a few of the ways that current technology can help to enhance

system maintainability.

Complexity analysis. Before attempting to reach a destination, it is essential to know
where you are. For a software system, a good first step is measuring the complexity of
the component modules

Functionality analysis. Function Point Analysis describes the uses and limitations of
function point analysis (also known as functional size measurement) in measuring
software. By measuring a program's functionality, one can arrive at some estimate of its
value in a system, which is of use when making decisions about rewriting the program or
reengineering the system. Measures of functionality can also guide decisions about
where to put testing effort

Reverse engineering/ design recovery. Over time, a systems code diverges from the
documentation - this is a well-known tendency of operational systems. Another
phenomenon that is frequently underestimated or ignored is that (regardless of the
divergence effect) the information required to make a given change is often found only in
the code. Several approaches are possible here. Various tools offer the ability to
construct program flow diagrams (PFDS) from code. More sophisticated techniques,
often classified as program understanding, are emerging. These technologies are
implemented as tools that act as agents for the human analyst to assist in gathering
information about a programs function at higher levels of abstraction than a program flow
diagram (e.g., retask a satellite).

Piecewise reengineering. If the system's known lifetime is sufficiently short, and if the
evolutionary changes needed are sufficiently bounded, the system may benefit from a
piecewise reengineering approach:

« Brittle, high-risk modules that are likely to need changes are identified and
reengineered to make them more maintainable. Techniques such as wrappers, an
emerging technology, are expected to aid here.

« For the sake of prudence, other risky modules are "locked," so that a prospective
change to them can be made only after thoroughly assessing the risks involved.

« For database systems, it may be possible to retrofit a modern relational or object-
oriented database to the system; Common Object Request Broker Architecture and

24

Graphic Tools for Legacy Database Migration describe technologies of possible use
here.

Piecewise reengineering can generally be done at a lower cost than complete
reengineering of the system. If it is the right choice, it delays the inevitable
obsolescence. The downsides of piecewise reengineering include the following:

« Platform obsolescence is not reversed. Risks arising from the platforms software
are unchanged- if the original database or operating system has risks, the
application using them will also.

« Unforeseen requirements changes still carry high risk if they affect the old parts
of the system.

« Performance may suffer because of the interface structures added to splice
reengineered to old ones.

Transition / Restructuring / Modularizing. Translation and/or restructuring of code are
often of interest when migrating software to a new platform. Frequently the new
environment will not support the old language or dialect. Restructuring/modularizing, or
rebuilding the code to reduce complexity, can be done simply to improve the code's
maintainability, but code to be translated is often restructured first so that the result will
be less complex and more easily understood. There are several commercial tools that do
one or more of these operations, and energetic research to achieve more automated
approaches is being done. Welker cites evidence that translation does little or nothing to
enhance maintainability (Welker 95). Most often, it simply continues the existing
problem in a different syntactical form; the mechanical forms output by translators
decrease understandability, which is a key component of maintainability. None of these
technologies is a cure-all, and none of them should be applied without first assessing the
quality of the output and the amount of programmer resources required.

Test generation and optimization. Mission criticality of many DoD systems drives the
maintenance activity to test very thoroughly. Boehm reported integration testing
activities consuming only 16-34% of project totals (Boehm, 81), but recent composite
post-release reviews of operational Cheyenne Mountain Complex system releases show
that testing consumed 60-70% of the total release effort. Any technology that can
improve testing efficiency will have high leverage on the system's life cycle costs.
Technologies that can possibly help include: automatic test case generation; generation of
test and analysis tools; redundant test case elimination; test data generation by chaining;
techniques for software regression testing; and techniques for statistical test plan
generation and coverage analysis.

25

Software Supportability Checklist. The following is a checklist to determine the
supportability of a given software system.

Table 4. Software Supportability Checklist

1. | Maintainability Requirement for a Maintenance Task Analysis (MTA)

2. | FTA, FMECA Requirement for Fault Tree Analysis (FTA) and Failure Modes
and Effects and Criticality Analysis (FMECA) to be performed to
functional depth

3. | Defect Rate Requirement to state a contractual target defect rate per lines of
code over an agreed period including confidence limits

4. | Failure Identification Design to provide features that achieve failure detection and
location times
Design to provide features that achieve failure detection and

5. | Failure Snapshot location times

6. | Tool Kit Provision of User/Maintainers software tool kits to aid failure
location

7. | Loading and Saving Data Design to allow loading or saving data in specified times

8. | Configuration Identification User/maintainer able to identify the configuration status (version)
without accompanying documentation

: Design to allow exception handling to preclude failure conditions

9. | Exception Handling from aborting software during operations

10. | Support Policy Constraints Use Study to include what the software must do and not do

11. | Support Maintenance Policy Support specific maintenance policies and manpower ceilings and
skill level availability to be stated

12. | Software Support and Categories of software support and maintenance to be stated

Maintenance Categories
Proposed media must: (a) suit the environmental requirements,

13. | Media and (b) be acceptable as a consumable item

14. | Media Copying Simplify copying and distribution
To allow physical and internal marking; safety critical items to be

15. | Media Marking separately marked

16. | Packaging Media packaging to be consumable, reusable, and robust

17. | Handling Media to require no special precautions and meet Use study
requirements

18. | Storage Media to require no special precautions or facilities and meet Use
Study requirements

19. | Transportation Media and packaging to require no special requirements

20. | Training, User User training required to detect failures and invoke exception
handling

Training Support Support training required to detect and locate failures and invoke

21. exception handling

22. | Publications User and Support publications will be required
The Requirement must include contractually agreed upon
definitions of: incident, fault, failure, defect, reliability, and

23. | Definitions failure categories

24. | Resources Cost estimates must be sought for software maintenance

25. | Test Tools Contractor-owned and maintained software test tools and
documentation must be provided

26. | Test Tool Access Access to test tools to be provided to software support personnel

27. | Incident/Failure Reporting Incident and failure reporting to be available

(Department of the Air Force, 1996)

26

Normalization Explained

Normalization is simply the process of understanding and making adjustments for
known differences between the models, whether estimated cost or schedule figures. Not
all models estimate the same phases of the software development or support environment.
Some models give a top level support cost or schedule, while others give a detailed
breakout of the three major phases of software support: corrective, adaptive, and
perfective. Understanding the mix (%) of these areas is extremely important to fully
understand what information the model is actually providing.

Proper use of any cost model requires a thorough analysis of the model's
assumptions and limitations, as well as its capabilities and features (The Analytic
Sciences Corporation (TASC), 1986).

The AFSC Cost Estimating Handbook points out several key questions the

analyst should resolve before using any model to prepare an estimate. Specifically:
(1) Is the data required to use the model available?

(2) What units of measure are used by the model (dollars or
person-months)?

(3) What is the content of the database on which the model was derived?

(4) What is the range of input values for which the model is valid? (Analytic
Sciences Corporation, 1986:8-6 - 8-10).

Unless the analyst fully understands the assumptions and phases included in each
model, it is impossible to compare one model with another model (Coggins and Russell,

1993:15).

Cost Model Descriptions
The material describing the SEER-SEM, PRICE-S, SoftCost-OO0, and Softest

software cost estimating models on the following pages (28 — 37) was extracted directly

27

from the PARAMETRIC COST ESTIMATING HANDBOOK -- Joint Government

/Industry Initiative, Department of Defense, Fall, 1995 with only minor modifications.

SEER-SEM

SEER-SEM is part of a family of software and hardware cost, schedule and risk
estimation tools. SEER models run on IBM, Macintosh, and Sun/UNIX platforms with
no special hardware requirements. SEER-SEM is used throughout the aerospace and
defense industry on two continents. All issues found in today's software environments

are addressed.
Inputs

SEER-SEM accepts source lines of code (SLOC) or function points or both. When
selecting function points, the user may use IFPUG standard function points or SEER
function-based inputs, which include internal functions. Users follow a Work
Breakdown Structure (WBS) describing each CSCI, CSC, and CSU (module or element)
to be estimated. Knowledge bases are used to provide fast and consistent inputs
describing complexity, personnel capabilities and experience, development support
environment, product development requirements, product reusability requirements,
development environment complexity, target environment, schedule, staffing and
probability. Users can modify all inputs to their specifications at any time.

There are five sets of knowledge bases that automatically input environment factors.
These knowledge bases cover a wide variety of scenarios and help users produce fast and
reliable estimates. Knowledge bases are easily calibrated to user environments to give
quick and accurate estimates for the entire life cycle. Users can also change and modify
each input at any time. Knowledge bases include the following:

Platform describes the primary operating platform. Platform knowledge bases include
avionics, business, ground-based, manned space, unmanned space, shipboard, and more. -

Application describes the overall function of the software under estimation. Application
knowledge bases include computer-aided design, command & control, database, MIS,
office automation, radar, simulation, and more.

Development Method describes the development methods to be used during the
development. These knowledge bases include Ada, spiral, prototyping, object oriented
design, evolving, traditional waterfall, and more.

Acquisition Method describes the scope and type of project being developed or
maintained. These knowledge bases include New Development, Concept Reuse, Design
Reuse, Integration Only, Language Conversions, Redocumentation, Reengineering,
Modifications, Rehosting, Incremental Builds, Year 2000 Modifications, and more.

28

Development Standard describes the development documéntation, quality, test
standards and practices which will be followed during the development. These
knowledge bases include commercial, 1ISO-9000, 2167A, 1703, 1679, 7935A and more.

Processing

SEER-SEM uses proprietary algorithms which are found in the back of the User's
Manual. Parameter (input) sensitivities and other insights into the model are also found
in the user's documentation. Knowledge bases can be printed out by users. SEER-SEM
utilizes an integrated process for risk analysis, including a Monte Carlo simulation.

Outputs

SEER-SEM has almost 30 informative reports and charts covering all aspects of software
costs, schedules and risk. The Quick Estimate Report is easily tailored to instantly give
the user specific details for trade-off analyses and decision support information. A
Detailed Staffing Profile follows SEI suggested staffing categories. Risk reports and
graphs based on person months, costs, and schedule are standard features. SEER-SEM
gives a minimum schedule output. However, schedules, personnel, and other factors can
be changed to give effort and cost tradeoffs.

Calibration

Calibration of SEER-SEM involves the effort to customize input values to more closely
reflect particular program development characteristics. Calibration mode allows users to
enter project actual effort and schedule. From this information, analysis of the estimated
values against the actuals is performed, and suggested calibration factors are provided.
Further analysis at higher levels is available to identify trends in technology and
calibration factors across multiple projects. Custom knowledge bases may be built to
store calibration results which may include parameter settings as wells as calibration
adjustment factors.

Life Cycle Considerations

SEER-SEM estimates all elements of the life cycle, beginning with the System
Requirements Design phase and ending with software maintenance. SEER-SEM has
many features which support Life Cycle Cost Analysis. Total life cycle cost is reported
in the Basic Estimate Report, Activity Report, and the Labor Allocation Reports. The Set
Reference feature allows for quick analysis of what happens to both development and
maintenance costs with the change of any parameter.

Support

SEER-SEM baseline maintenance includes all adaptive, perfective and corrective
maintenance. Additionally, you may add annual change rate and growth percents to

29

anticipate any functional growth or enhancements over the software maintenance period.
Enhancements and block upgrades can also be estimated.

Contact

Galorath Incorporated

100 North Sepulveda, Suite 1801
El Segundo, CA 90245
310-414-3222
www.galorath.com

SOFTCOST-00

SoftCost-OO superseded SoftCost-Ada in 1996 with additional facilities such as C++ and
object-oriented (O0) Calibrations. The SoftCost-R model was developed by Don Reifer
based on the work of Dr. Robert Tausworthe of the NASA Jet Propulsion Laboratory.
SoftCost is now marketed by Resource Calculations, Inc. of Englewood, Colorado. It
contains a database of over 1500 data processing, scientific and real-time programs.
SoftCost-R is applicable to all types of programs and considers all phases of the software
development cycle. The model is available for lease on IBM PC's. A separate model
SoftCost-Ada is available to model Ada language and other object-oriented
environments.

SoftCost-Ada has been developed to match the new object-oriented and reuse paradigm
which are emerging not only in Ada, but also C++ and other object-oriented techniques.
It contains a database of over 150 completed projects, primarily Ada.

SoftCost-R Inputs

A key input of SoftCost-R is size, which can either be directly input in SLOC or
computed from function points. SoftCost-R uses a more sophisticated sizing model than
COCOMO:; besides reused code, sizes of modules added or deleted may be included.

The other inputs are in four categories like COCOMO. Some SoftCost-R inputs are
similar to COCOMO, but many of the more than thirty inputs are unique. Examples of
unique inputs are use of peer reviews, customer experience, and degree of
standardization. Each input except size requires a rating ranging from "very low" to
"extra high", with "nominal" ratings having no effect on effort calculations. SoftCost-R
also uses COCOMO inputs to compare the results of SoftCost-R with those of an updated
version of COCOMO.

SoftCost-Ada Inputs

In the main, the inputs are the same as SoftCost-R, with some changes to reflect the new
paradigm. There is no COCOMO comparison.

30

Processing

SoftCost-R is not a simple regression model. It uses powerful multivariable differential
calculus to develop solutions relying on a probability distribution. This provides the
ability for the user to perform "what-if" analysis and look at what would happen to
schedule if effort were constrained. Such a capability is not present in COCOMO.
SoftCost-R is one of the few models for which the mathematical algorithms are
completely described in the user's manual. The SoftCost-R equation is:

PM=P0 * Al * A2 * (SLOC)B
where,
PM = number of person-months,
PO is a constant factor that may be calibrated,
A 1 is the "Reifer cost factor" which is an exponential product of nine inputs,
A2 is a productivity factor computed from 22 inputs,
B is an exponent which may be calibrated.

The user's manual illustrates values assigned to ratings for all model inputs to help the
user understand the effect of each input on effort and schedule.

Outputs

SoftCost-R computes an estimate in person-months of effort and schedule for each
project, plus a productivity value. Other outputs include a side-by-side comparison with
a recent version of COCOMO, several "what if"" analysis options, a resource allocation
summary for any of three development methods (traditional waterfall, incremental
development, or Ada object-oriented), and schedule outputs for Gantt and PERT charts.
SoftCost-Ada output formats are similar, and can interface with project planning tools in
the same way.

Calibration

The model contains a calibration file, which contains values for multiple calibration
constants and cost drivers. The user may change these values to better describe the user's
unique environment, and store alternative calibration and WBS files for different jobs.
SoftCost-Ada and SoftCost-R are similar.

Life Cycle Considerations

SoftCost-R contains a separate life cycle model for support costs. In addition to
SoftCost-R development inputs, life cycle inputs include annual change traffic, length of
support period, a sustaining engineering factor, and economic factors. In addition to
annual and total support costs, the life cycle model has optional reports for various
staffing options, fixed levels of maintenance, and fixed work force levels. Both SoftCost
versions are similar, and use the same staff limited approach to life cycle resource
allocation.

31

Contact

Mr. A.J. (Tony) Collins

Resource Calculations, Inc.

7853 East Arapahoe Court, Suite 2500
Englewood, CO 80112-1361
Telephone: (303) 267-0379

Facsimile: (303) 220-5620

PRICE-S

This model was developed originally by RCA as one of a family of models for hardware
and software cost estimation. Developed in 1977 by F. Freiman and Dr. R. Park, it was
the first commercially available detailed parametric software cost model to be extensively
marketed and used. In 1987, the model was modified and re-validated for modern
software development practices. The PRICE-S model is proprietary, it can be leased for
yearly use on IBM or compatible PC, and operates within Microsoft windows. It is also
available for use on a UNIX workstation. The model is applicable to all types of
software projects, and considers all DoD-STD-2167A development phases.

Inputs

One of the primary inputs for the PRICE-S model is source lines of code (SLOC). This
may be input by the user or computed using either object-oriented or function point sizing
models. Both sizing models are included in the PRICE-S package. Other key inputs

include:

1. Application: a measure of the type (or types) of software, described by one of
seven categories (mathematical, string manipulation, data storage and
retrieval, on-line, real-time, interactive, or operating system).

2. Productivity Factor: A calibratable parameter which relates the software
program to the productivity, efficiency/inefficiencies, software development .
practices and management practices of the development organization.

3. Complexities: Three complexity parameters which relate the project to the
expected completion time, based on organizational experience, personnel,
development tools, hardware characteristics, and other complicating factors.

4. Platform: the operating environment, in terms of specification, structure and
reliability requirements.

5. Utilization: Percentage of hardware memory or processing speed utilized by
the software.

6. New Design/New Code: Percentage of new design and new code.

32

7. Integration (Internal): Effort to integrate various software components
together to form an integrated and tested CSCI.

8. Integration (External): Effort to integrate various software CSCI’s together to
form an integrated and tested software system.

9. Schedule: Software project start and/or end dates.
10. Optional Input Parameters: Financial factors, escalation, risk simulation.

Processing

The PRICE-S algorithms are published in the paper entitled "Central Equations of
PRICE S" which is available from PRICE Systems. It states that PRICE-S computes a
"weight" of software based on the product of instructions and application inputs. The
productivity factor and complexity inputs are very sensitive parameters which affect
effort and schedule calculations. Platform is known to be an exponential input; hence, it
can be very sensitive. A new weighted design and code value are calculated by the
model based on the type or category of instructions. Both new design and code affect
schedule and cost calculations. Internal integration input parameters affect the CSCI cost
and schedule for integrating and testing the CSCI. The external integration input
parameter is used to calculate software to software integration cost and schedule.

Outputs

PRICE-S computes an estimate in person effort (person hours or months). Effort can be
converted to cost in dollars or other currency units using financial factor parameters.
Software development schedules are calculated for nine DoD-STD-2167A phases:
System Concept through Operational Test and Evaluation. Six elements of costs are
calculated and reported for each schedule phase: Design Engineering, Programming,
Data, Systems Engineering Project Management, Quality Assurance, and Configuration
Management. The PRICE-S model also contains several optional outputs including over
thirty graphs, Gantt charts, sensitivity matrices, resource expenditure profiles, schedule
reports. In addition, Microsoft Project files, spreadsheet files, and risk analysis reports
can be generated. The risk analysis report is a Cumulative Probability Distribution and is
generated using either Monte Carlo or Latin Hypercube simulation.

Calibration

The PRICE-S model can be run in ECIRP (PRICE backwards) mode to calibrate selected
parameters. The most common calibration is that of the productivity factor, which,
according to the PRICE-S manual, tends to remain constant for a given organization. It is
also possible to calibrate platform, application, and selected internal factors.

2

33

Life Cycle Considerations

The PRICE-S life cycle model, included in the PRICE-S package, is a detailed model,
which computes software support costs. The primary inputs include PRICE-S
development inputs, support descriptors which include software support life, number of
installations, expected growth, and support productivity factors. The model also has a
modification mode, which allows up to four modifications per software CSCI. The
PRICE-S life cycle model calculates support effort and outputs the cost in three support
phases: maintenance, enhancements, and growth. The model allocates effort or cost
across six elements of costs for each support phase.

Risk Analysis

The PRICE-S model contains a robust Monte Carlo simulation utility, which facilitates
rigorous risk analysis. Uncertainty can be characterized using probability distributions to
define input parameters. Normal, Beta, Triangular and Uniform distributions are among
those available. Simulation results are consolidated and reported as a probabilistic

estimate.

Contact

PRICE Systems

700 East Gate Drive, Suite 200 »

Mt. Laurel, NJ 08054 (800) 437-7423 a.k.a (800) 43PRICE

SoftEst (A Windows version of REVIC)

The Revised Intermediate COCOMO (REVIC) model was developed by Ray Kile and
the U.S. Air Force Cost Analysis Agency. It is a copyrighted program that runs under
DOS on an IBM PC or compatible computer. The model predicts the development costs
for software development from requirements analysis through completion of the software
acceptance testing and maintenance costs for fifteen years. REVIC uses the intermediate
COCOMO set of equations for calculating the effort (man-power in staff-months and
staff-hours) and schedule (elapsed time in calendar months) to complete software
development projects based on an estimate of the lines of code to be developed and a
description of the development environment. The forms of the basic equations are:

MM = AB(KDSI)P(Fi) 1)
TDEV = CD(MM) @)

Equation (1) predicts the manpower in man-months (MM) based on the estimated
lines of code to be developed (KDSI = Delivered Source Instructions in thousands)
and the product of a group of environmental factors (Fi). The coefficients (A,C),
exponents (B,D) and the factor (Fi) are determined by statistical analysis from a
database of completed projects. These variables attempt to account for the variations
in the total development environment (such as programmer's capabilities or
experience with the hardware or software) that tend to increase or decrease the total

34

effort and schedule. The results from equation (1) are input to equation (2) to
determine the schedule (TDEV = Development Time) in months needed to complete
the development.

REVIC enhancement of the intermediate COCOMO includes:

The addition of a fourth mode - Ada. Intermediate COCOMO has three modes of
software development: organic, semi-detached, and embedded. These modes describe
the overall software development in terms of size, number of interfaces, and complexity.
REVIC adds a fourth mode, Ada development, to the model. This mode describes
programs developed using an object oriented analysis methodology or use of the Ada
language (with separately compilable specifications and body code parts). Each mode
provides a different set of coefficients for the basic equations.

Addition of the first and last development phases. COCOMO provides a set of tables
distributing the effort and schedule to the phases of development (system engineering,
preliminary design, critical design, etc.) and activities (system analysis, coding, test
planning, etc.) as a percentage of the total. COCOMO covers four development phases
(preliminary design, critical design, code and unit test, and integration and test) in the
estimate. REVIC adds two more development phases: software requirements
engineering, and integration & test after FQT.

REVIC predicts the effort and schedule in the software requirements engineering phase
by taking a percentage of the development phases. It provides a default value (12% for
effort, 30% for schedule) for this percentage based on average programs, but allows the
user to change the percentage.

COCOMO development phase ends at completion of the integration & test phase (after
successful FQT). This phase covers the integration of software CSC's into CSCI's and
testing of the CSCI's against the test criteria developed during the program. It does not
include the system level integration (commonly called software builds) of CSCI's, and the
system-level testing to ensure that system-level specification requirements are met. The
software to software and software to hardware integration and testing is accounted for in
the Development Test and Evaluation (DT&E) phase. REVIC predicts the effort and
schedule for this phase by taking a percentage of the development effort. REVIC
provides a default percentage of 22% for effort and 26% for schedule based on average
programs. It allows the user to modify these percentages if desired.

Complete interface between the model and the user. Users are not required to have
extensive knowledge about the model or detailed knowledge of algorithms. REVIC
contains extensive prompting and help screens. REVIC also removes the typical
intimidation factor that prevents analysts from successfully using models.

Provide the capability to interactively constrain the schedules and staffing levels.
Schedules can be constrained either in the aggregate or by phase of the development
effort. Staffing can be constrained by phase. Using these features, the analyst can

estimate cost overruns, underruns, and schedule slips at any major milestone by entering
the actuals-to-date at any milestone, and letting the program calculate the remaining
effort and schedule.

Inputs: Same as COCOMO inputs.

Processing

While REVIC processing is mostly the same as Intermediate COCOMO, it provides a
single weighted "average" distribution for effort and schedule, along with the ability to
allow the user to vary the percentages in the system engineering and DT&E phases. On
the other hand, COCOMO provides a table for distributing the effort and schedule over
the development phases, depending on the size of the code being developed. REVIC has
been enhanced by using statistical methods for determining the lines of code to be
developed. Low, high, and most probable estimates for each CSC are used to calculate
the effective lines of code and standard deviation. The effective lines of code and
standard deviation are then used in the equations, rather than the linear sum of the
estimates. This quantifies, and to some extent, reduces the existing uncertainties
regarding software size. [see Boehm's Software Engineering Economics for a discussion
of effective lines of code]. REVIC automatically performs sensitivity analysis showing
the plus and minus three sigma values for effort, and the approximate resultant schedule.

Outputs

The user is presented with a menu alldwing full exercise of the analytical features and
displays of the program. All inputs are easily recalled and changed to facilitate analyses
and the user can constrain the solution in a variety of ways.

Calibration

REVIC's coefficients have been calibrated using recently completed DoD projects
(development phase only) by using the techniques in Dr. Boehm's book. On the average,
the values predicted by the effort and schedule equations in REVIC are higher than in
COCOMO. A study validating REVIC equations using a database different from that
used for initial calibration was published by the Air Force's HQ AFCMD/EPR. In terms
of accuracy, the model compares favorably with expensive commercial models.

The level of accuracy provided by the model is directly proportional to the user's
confidence in the lines-of-code (LOC) estimates and a description of the development
environment. When little is known about the project or environment, the model can be
run leaving all environment parameters at their default (nominal) settings. The only
required input is LOC. As the details of the project become known, the data file can be
reloaded into the program, and the nominal values can be changed to reflect the new
knowledge permitting continual improvement of the accuracy of the model.

36

Support

REVIC provides an estimate for software maintenance over a fifteen-year period by using
the Boehm's COCOMO equation:

MMam = MMnom * ACT P (MFi) (3)

where, MMnom is the result of equation (1) without multiplying by the environmental
factor (Fi); ACT is annual change traffic as a percentage, and Mfi is the environmental
factors for maintenance.

REVIC provides a default percentage of ACT and allows it to be changed. REVIC also
assumes a transition period after delivery of the software, during which residual errors are
found before reaching a steady state condition. This provides a declining, positive delta
to the ACT during the first three years. Beginning the fourth year, REVIC assumes the
maintenance activity consists of both error correction and new software enhancements.

Other Reference Materials

There is context-sensitive help available on-line while running REVIC, and the
information is enough to input data and obtain results in all cases. However, the
developers recommend that Boehm's Software Engineering Economics be read to fully
understand the implications of parametric modeling.

Contact

The Air Force Cost Analysis Agency has assumed responsibility for REVIC upkeep and
distribution. For suggestions for upgrades or problem reporting, contact:

Air Force Cost Analysis Agency

AFCAA/FM

1111 Jefferson Davis Highway

Crystal Gateway North #403

Arlington, VA 22202

(703) 604-0412

SPR KnowledgePLAN 2.0 (Update to Checkpoint)

The SPR KnowledgePLAN 2.0 was developed by Capers Jones. SPR KnowledgePLAN
is marketed by Software Productivity Research of Burlington Massachusetts.
KnowledgePLAN 2.0 uses a knowledge database collected from nearly 7,000 software
projects from around the world. KnowledgePLAN 2.0 is applicable to all types of
programs and considers all phases of the software development cycle. The model is
available for sale on IBM compatible PC's.

KnowledgePLAN 2.0 uses function points as the primary means for estimation. SLOC
inputs are converted to function points to perform estimation calculations.

37

Inputs

A key input of KnowledgePLAN 2.0 is size, which can either be directly input by
function points or SLOC. If the size of the software is not known, then the project sizing
wizard can be used to get an estimate. The main estimation parameters are:
classification, complexity, sizing, attributes, goals, calibrate, and task categories. Most
parameters are further subdivided with various input tabs. For example, attributes are
subdivided into personnel, technology, process, environment, product, and maintenance.

Processing

KnowledgePLAN 2.0 is not a simple regression model. It uses algorithms, rules, and
adjustments stored in the project’s and SPR’s knowledge bases, and task properties. SPR
KnowledgePLAN 2.0 has over 100 adjustment variables that may influence an estimate.

Outputs

The SPR KnowledgePLAN 2.0 computes an estimate in person-months of effort,
schedule, and cost for each project. Various reports and tables are available, including
Gantt charts. The software also allows for easy exportation/importation into other
software programs such as Microsoft Project and MPX-Compatible applications.

Calibration

The model can be calibrated at the project or task category levels. Project level
refinement occurs through the Calibrate menu and task refinement can be accomplished
through changes in task category inputs (project input menu). Major calibration efforts
can be accomplished by modifying templates, creating new templates, or with help from
SPR to develop a new knowledge base.

Life Cycle Considerations

KnowledgePLAN 2.0 contains a separate database for development and support costs.
Separate estimates must be generated for the development and support effort. For the
support effort the following areas are addressed: resource loading scheduling, and
maintenance attributes. The maintenance attributes are subdivided into personnel,
technology, process, environment, and product for a total of 19 inputs.

Contact

Mr. Bob Haven

Software Productivity Research (SPR)

One New England Executive Park

Burlington, MA 01803-5005 USA

Telephone: (781) 273-0140 (http://www.spr.com)
Facsimile: (781) 273-5176

38

Database Summary of the Models

Table 5. Model Database Legacy

CURRENT SEER- Cheek
DATABASES REVIC | SASET SEM PRICE-S | SLIM | SoftCost- Point
Ada X X X X X X X
Other
Languages X X X X X
Commercial
Other
Languages X X X X X
Government

(Stukes, 1996)

Summary

This chapter reviewed current issues in the software support area, estimating
methodologies, normalization, and the cost models being evaluated. The overall theme
of this literature was consistent: software support needs help, and fast, in order to address
the software support crisis and operating and support funding requirements. Numerous
software support activities have been identified in the literature, however, Table 6 shows
that some models lack the identification of various activities, which are performed during

the support effort.

39

Table 6. Software Support Estimate Attribute

SUPPORT
ATTRIBUTES

REVIC

SASET

SEER-
SEM

PRICE-S

SLIM

SoftCost-

00

CheckPoint

Support
Definition
includes:

Maintenance

Adaptation to
Requirements

Enhancements

New Functions
(Growth)

Support
Estimate
Based on:

Factor from
Develop. Effort

Unique
equation(s)

X

40

(Stukes, 1996)

III. Methodology

Overview

This chapter discusses the methodology used for this research effort, which is a
follow-on éffort to the Coggins and Russell effort of 1993. This effort will concentrate
on Software Support, while the Coggins and Russell effort focused on Software
Development. This analysis will be conducted in two steps. First, an independent
analysis of the selected cost models will be performed using the base test case established
in the Coggins and Russell effort (Coggins and Russell, 1993:93). Second, validation
will be performed and concurrence will be sought with model vendors and experts in the
field.

Independent Analysis (Step 1)

Using the Coggins and Russell base test case, the researchers became familiar
with the selected cost estimating models. Appendix A illustrates the Coggins and Russell
base case. After gaining familiarity and getting comfortable with using the models, the
researchers examined the underlying assumptions and known algorithms of each model
to identify significant differences. The researchers also performed additional regression
analysis in trying to discover unpublished algorithms within the models for the given
relevant range of the data.

The researchers used books, manuals, telephone calls (to experts and technical
assistance), personal interviews, and "hands-on" experience to become knowledgeable
with how the models operated. A focal point for each of the given models was contacted
when additional assistance was required. Telephone interviews were the primary means

of communicating with the focal points. Most models had to be used several times before

41

a "comfort level" was reached with the researchers. After the comfort zone was reached,
the researchers turned their attention to the underlying assumptions and algorithms.

The underlying assumptions and algorithms were evaluated to identify significant
differences in the software support costs in the models. The team worked together
evaluating each model, but also used a checklist to insure all models were evaluated
equally. The complete checklist is in Appendix B. An example of some of the questions
on the checklist are:

Issue 1. What are the unique input parameters that directly affect the support
costs?

Issue 2. What is the estimating methodology being used?
Issue 3. What are the underlying algorithms?

Issue 4. What is the underlying basis for the parameter value?
Issue 5. Is support broken out into support sub-categories?

Issue 6. What types of sub-categories are included, for example: Preventive,
Adaptive, and Corrective?

Issue 7. What time span is the maintenance/support option covering for the
various models (5-20)?
(Parallels Coggins and Russell, 1993:23 & 104-106)

The baseline test case from the Coggins and Russell effort was used for two
primary reasons. First, this effort is a follow-on to the Coggins and Russell effort.
Secondly, a fictional case was preferred over actual data for numerous reasons. The first
was to prevent possible legal issues when the results are published. The second was to
examine the means by which the models develop the estimate rather than trying to

validate the accuracy of an estimate. This effort examines the model's estimate and how

it was derived and not the accuracy of the model to a "real world" situation. This effort

42

focuses solely on the differences in the estimates provided by the selected models and not
the accuracy of the selected models.

Using the same inputs as the Coggins and Russell effort, and nominal inputs for
all other areas, software support estimates were determined for each model. The table of
inputs and the results are included in Appendices C-G and in Chapter IV-Findings,
respectively.

Validation and Concurrence (Step 2)

This phase focused on insuring the researchers had not inadvertently overlooked a

key component or input of each model. The steps included:

1) Interviewing model experts and vendors to obtain information not
found during the independent analysis.

2) Validating the accuracy of the research results with model experts and
vendors.

3) Documenting the results of validations and concurrences with vendors.

4) Reevaluating and updating research after discussions with vendors if
required.

(Coggins and Russell, 1993:24)

This phase relied heavily on telephone and personal interviews with the model
vendors and experts in the field. There was significant overlap between Steps 1 and 2,
since many of the algorithms are not published or readily available, and more guidance
was needed at times than what was included in the users’ manuals that were provided to

the researchers.

43

IV. Findings
Overview

This chapter provides the results of the model evaluation of the Price-S, SEER-
SEM, SoftCost-00, SoftEst, and SPR KnowledgePLAN. The results of the research
 effort are summarized below followed by a detailed section on each model that was
selected for the comparative study.

The models estimated a twenty-year cost that varied from $35M for PRICE-S to
$101M for SEER-SEM with the other models’ estimates falling within the range, with the
exception of SPR KnowledgePLAN, which does not have a twenty-year maintenance
template. Because a ﬁctitiou$ case was used the accurécy of the models was not
examined, but the manner in which the models developed the estimates and the
differences between the models were addressed. Table 7 is a summary of the results of

the model estimates for the first five years of support and the 20-year total.

Table 7. Summary of Model Estimates

SPR
Model PRICE-S | SEER-SEM | SoftCost-OO | SoftEst KnowledgePLAN
15T 5Yrs $14.3M $36.9M $15.0M $25.9M $20.8M
Full 20Yrs | $34.9M $101.3M $57.6M $91.2M *

* The default time period for a support effort in KnowledgePLAN 2.0 is a 5-year period.

44

PRICE-S
The PRICE-S model gave an estimate of $34.9M for the 20-year maintenance

period analyzed. The support costs were categorized or broken out into maintenance,
enhancement, and growth. These three categories of support were then further refined
into the following five subcategories: design engineering, programming, data systems
eng/prog mgmt, quality assurance, and configuration control. The three main support
categories were also broken out on a yearly basis for the 20-year duration of the support
effort. The model does not directly consider the cost of updating the documentation
(change pages) as a separate line item in the model, however it is considered in the data
and it is the last calculation made. The PRICE-S model accounts for program
management in the systems engineering / program management category. The model
also allows for variations in the number of years that the software is to be supported.

The PRICE-S definition of Source Lines Of Code (SLOC) is that it is the total
number of lines of code to be developed and or purchased. Comments imbedded in the
code are not counted in the number of source lines of code. Type declarations and data
statements are included in SLOC and are broken out separately through in the FRAC
input parameter.

The first step of the analysis for the PRICE-S model consisted of identifying the
segmented parameters that can affect the support effort of software. The first parameter
area that was addressed in the analysis was the developmental area. The developmental
parameters for CSCI 2 were used as a representation of the affects that parameter changes
have on the model and the estimated effort, as well as to keep consistency in the analysis
by addressing CSCI 2 for the remaining models when appropriate. The parameters

values were first increased in value when possible and then decreased in value when

45

possible. The results of the variations of the development parameters can be found in

Table 8.
Table 8. Variations in Development Parameters for CSCI 2
Baseline for CSCI 2 977.7 Person Months
Decrease New Increase New
Development| Parameter | Estimate | Change | Parameter | Estimate | Change
Parameters Value for Person |in Person| Value |for Person|in Person
for CSCI 2 Inputs Months | Months Inputs Months | Months
Mgmt 1.0-0.9 |No Change| 0.00% 1.0-1.2 |[No Change| 0.00%
Complexity
External .50-.30 |No Change| 0.00% .50-.70 [No Change| 0.00%
Integration
Internal .50-.30 968.40 -0.95% 50-.70 989.00 1.16%
Integration
Utilization Time .5 | ------e-m-- 0.00% | Time .55 1009.30 3.23%
Memory .5 | ----------- 0.00% | Memory .55| 1009.30 3.23%
Platform 1.8-1.4 85220 |-12.84% | 1.8-2.0 1018.10 4.13%

The first parameter value analyzed was management complexity (CPLXM).

Management complexity provides a quantitative description of the relative effect of

complicating factors on the overall software task. A value of 1.0 represents an industry

average for management complexity. The management complexity parameter was found

not to have an effect on the support effort, whether increasing or decreasing the

parameter value. The next parameter evaluated was the external integration parameter

(INTEGE). External integration is the variable that represents the level of difficulty of

integrating and testing the CSClIs to the system level. A value of .5 is typical and a value

less than .5 represents more complex tasks. The external integration parameter was

found not to have an effect on the support effort by increasing or decreasing in the

parameter value. The third parameter analyzed was internal integration (INTEGI). The

internal integration parameter represents the level of integrating and testing components

to the CSCI level. A typical value is .5, a value less than .5 is a simpler integration effort

46

and a value greater than .5 is a requirement for more effort. Internal integration showed a
modest decrease to 968.4 from 977.7 or a 0.95% decrease, when the value of the
parameter was decreased from .50 to .30. When the internal integration value was
increased from .50 to .70. The support effort showed an increase in value to 989.0 from
977.7 or a 1.16% increase. Figure 7 represents a graph of the variations of internal
integration parameter and the resulting level of effort in Person Months. A linear
regression line was then fitted to the three data points with a resulting R-squared value of
.9969. The researchers are confident that the regression equation can predict the effort in
person months within the given relevant range with 99% of the variation in the predicted

value being explained by the regression equation.

Internal Integration Value Compared to Effort in Person Months

995.00
990.00

985.00 _—
980.00
975.00

970.00
965.00

Effort in Person Months

0.2 0.3 0.4 0.5 0.6 0.7 0.8

y=51.5x+ 952.62 Internal Integration Value

R? = 0.9969

Figure 7. Variations in Internal Integration for CSCI 2 of the Baseline Case

The utilization parameter was the fourth parameter evaluated in the development
parameter section of the model. The utilization parameter is subdivided into time and
memory. The utilization parameter represents the total cycle time or the total memory

capacity used. This variable represents the effort needed to adapt the software to run

47

within the processor limitations. The initial parameter value of 5.0 could not be

decreased or adjusted below the default value of 5.0. Therefore, a series of increases in
the utilization parameter were looked at in the analysis. The first incremental increase
was made from 5.0 to 5.5, which resulted in an effort of 1009.3 person months or an
increase of 3.23% above of the baseline effort. A second increase was made from 5.0 to
6.0, which resulted in an effort of 1048.9 person months or an increase of 7.28% above of
the baseline effort. The results and a graph of the variations of the utilization parameter

can be found in Figure 8. A linear regression line was then fitted to the three data points

with a resulting R-squared value of .9958.

Utilization (Memory - Time)

1060.00
1050.00 /____
«» 1040.00
§ 1030.00 -
6
S 102000
g 101000
g 1000.00
& e90.00 —
980.00 -
970.00 : : : : :
0 05 1 15 2 25 3 35

y = 35.6x + 940.77 Parameter Values

R?=0.9958
Parameter Parameter Avg Person Months
Time .50 Memory .50 0.50 977.70
Time .55 Memory .55 0.55 1009.30
Time .60 Memory .60 0.60 1048.90

Figure 8. Utilization Variations Compared to Person Months for CSCI 2
The fifth parameter analyzed was platform. The platform parameter was found to

have an affect on the support effort by increasing or a decreasing the parameter’s value.

48

A decrease in the platform value from 1.8 (manned air) to 1.4 (mobile) resulted in a
decrease in effort to 852.2 person months or a decrease of 12.84% from the baseline case
effort. The platform parameter also resulted in an increase in effort to 1018.1 person
months or 4.13% when the parameter value was increased from 1.80 (manned air) to 2.0
(unmanned space). Note that the amount of increase and the amount of decrease in the
parameter value vary the estimated effort by 4 - 13 % depending on the platform that the
software will be used for in the system. The changes in the values were a one unit
increase and a one unit decrease from the baseline case used in the study. Figure 9
represents a graph of the variations of the platform parameter and the resulting level of

effort in person months.

Platform Values Compared to Effort in Person Months

1040
1020

1000 —
980 —
960 el
940 ~
920 ~
900 P
880 e
860 P

840

Effort in Person Months

1 1.2 14 1.6 1.8 2 22
Platform Values

Figure 9. Platform Variations Compared to Person Months for CSCI 2

The 'next area of input parameters analyzed in the PRICE-S Model was the input
section for the language of the software. Within the language section, the following types
of inputs are allowed: complexity parameter (CPLX1), hardware software integration
complexity parameter (CPLX2), the productivity factor parameter (PROFAC), type of
language (LANG), fraction of non-executable code (FRAC), application (APPL), new

design (NEWD), new code (NEWC), and SLOC.

49

Definitions for the Language Parameter Inputs:

Complexity parameter (CPLX1). CPLX1 is a quantitative description of the relative
effect of complicating factors on the development effort. Input variables include product

familiarity, personnel attributes, software tools, and any unusual factors in the
development arena. CPLX1 is directly related to performance schedule. CPLX1 and
schedule are treated as a like pair. CPLX1 is used to develop a typical schedule for the
estimate. The typical schedule value is compared with the input schedule to assign costs
for the excessive acceleration of stretch out. A value of 1 represents an industry average
of a normal project/program and with a normal set of programmers.

Hardware Software Integration (HIS) complexity parameter (CPL.X2). CPLX2 isa

quantitative description of the relative effect of complicating factors on the development
effort caused by hardware and software interactions. A value of 1 is an industry average. __

Productivity factor parameter (PROFAC). PROFAC is an empirically derived parameter
that includes skill levels, experience, productivity, and efficiency. PROFAC provides a

way to consolidating, calibrating, and incorporating the net effect of organizational
~ tendencies on the development costs. '

Language (LANG). LANG is the language to be used for the development effort

Fraction on non-executable code (FRAC). FRAC is the fraction of source lines of code
that represent the data statements and the type declarations.

Application (APPL). APPL is a parameter that summarizes the application of the mix of
instructions. APPL has a normal range from 0.866 to 10.952. Values close to the lower
end of the continuum represent mathematical strings. Values at the higher end represent
real time command and control and interactive applications representing a more difficult

coding task.

New design (NEWD). NEWD is the percentage of new and unique design effort to be
completed for the development project. NEWD is effort based and not based on SLOC. -

New code NEWC). NEWC is the percentage of new and unique code effort that is effort
based and is not based on SLOC.

Some of the language parameters had an influence on the level of effort for
supporting the given software. Table 9 shows an overall summary of the affects that the
language parameters had on the support effort. As can be seen from Table 9, complexity
parameter, hardware software integration complexity parameter, and the production

factor parameter did not have an influence on the support effort when the values were

50

increased and then decreased. However, the application and language parameters did

have an affect on the support effort. When the application parameter was decreased from

5.5 to 5.0, a decrease to 897.1 person months or 10.08% decrease in the level of effort

was observed. When the application parameter was increased from 5.5 to 6.0 an increase

in the level of effort to 1078.9 or a 10.35% increase was observed. The LANG parameter

in the language input environment of the model had the largest affect on the support

effort estimate. A change from C++ to Ada95 resulted in an increase in effort to 1145.3

person months or a 17% increase in the support effort, thus accounting for language

differences.
Table 9. Variations in Language Parameters for CSCI 2
Baseline for CSCI 2 977.7 Person Months
| Decrease New Increase New
| Language | Parameter | Estimate | Change Parameter| Estimate | Change
| Parameters Value for Person |in Person| Value | for Person |in Person
| for CSCI 2 Inputs Months | Months | Inputs Months Months
; Complx 1 0.8—0.7 [No Change| 0.00% | 0.8-1.0 | NoChange | 0.00%
| Complx 2 1.0-0.9 |No Change| 0.00% | 1.0-1.1 | No Change | 0.00%
| Prod Factor 5.0-4.0 {[No Change| 0.00% | 5.0-6.0 | No Change | 0.00%
Application 55-5.0 879.10 | -10.08% | 5.5-6.0 1078.90 10.35%
Language C+t+-Adad95| 114530 | 17.14%
Application Values Compared to Effort in Person Months
Aw 1200
g 1000 —
2 s00 e
| [~]
| g 600
; -8
| £ 400
| 5 200
i B
%) 4.8 5:0 5:2 5:4 5:6 5;8 6;0 6.2
| y =199.8x - 120.33 Application Values
R?=0.9999

51

Figure 10. Application Value Variations Compared to Person Months for CSCI 2

PRICE-S also has a separate input section for the support environment labeled
deployment section. Within the deployment section, the following types of inputs are
allowed: Start and End Date, number of installations, quality level (Q-level), growth level
(G-level), enhancement level (E-Level), enhancements factor (EPROFAC), maintenance
factor (MPROFAC), growth factor (GPROFAC), and Source Lines of Code (SLOC).
Definitions for the Deployment Parameter Inputs (PRICE-S, 1993):

uality Level (Q-Level). An input value that adjusts the models estimate for initial
defects, which allows the user of the model to adjust maintenance costs. A typical value
for Q-Level is 1. A value of 2 would imply that that the delivered code has half the
number of errors that PRICE S would compute for the project.

Growth. Growth is the addition of new software functions or capabilities not called for in
the original development effort. Growth is represented by the number of executable and
non-executable instructions.

Growth Level (G-Level). The increase in the software’s size SLOC/KDSI that is
anticipated to be added for modifications or new software functions that were not found
in the original development effort. A value of 1.5 would represent an increase of 150%
of the initial program size over the life of the support effort.

Enhancement. The improvement made in the portability, efficiency, and performance of
the software. The purpose of enhancement is to modify the original performance
specifications without adding new functions to the software. It also includes those
activities that are required to upgrade or modify hardware components. Enhancement is a
replacement operation that can often be represented by increases in speed, response
times, or through put.

Enhancement Level (E-level). Enhancement level is a modifier to the internally estimated
level of enhancement to the code. A typical value for E-Level is normally 1.

Enhancement Level (EPROFAC). EPROFAC is an empirically derived parameter that
includes variables such as skill level, experience, productivity, and efficiency.

EPROFAC is often less than the development activity productivity factor.

Maintenance. Maintenance is the effort performed to correct latent defects in the
software that prevent it from meeting its original specifications. Maintenance is geared
towards fixing bugs in the software. It also includes efforts aimed at making future
repairs and system updates more efficient, such as readability and maintainability.

52

Maintenance PROFAC (MPROFAC). MPROFAC is an empirically calculated parameter
that includes skill levels, experience, productivity, and efficiency as related to the
maintenance activity. MPROFAC is a mandatory input.

Growth PROFAC (GPROFAC). GPROFAC is a derived parameter that which includes
skill level, experience, productivity, and efficiency as related to the growth activity.

The first parameter analyzed in the deployment input environment was activity
installations. Activity installations identifies the maximum number installations where
the software is to be deployed. When the value of the parameter was changed from 1 to
2, a 5% decrease in the total support cost was identified with the maintenance category
increasing by 1 percent and the enhancement category decreasing by 13%. When the
value was increased from 1 to 5, a decrease of 11% was identified with a 2% increase in
the maintenance category and a 28% decrease the enhancement category. The larger the

number of installations the less enhancements. See figure 11 for installation effort graph.

No. of Installations Compared to Total Person Months

2500.00

b

2 2000.00 - X
é . —e— Maint.
= 1500.00 —@— Enhance.
§ 1000.00 —_ - —a— Growth
o —3¢— Total
g 50000 — 2
-

0.00 , . . .

0.0 1.0 20 3.0 40 5.0 6.0

No. of Installations

Parameter Values Maint. Change Enhance. Change Growth Change Total Change

Installations

Baseline 1.0 68540 0.0% 98450 0.0% 62920 0.0% 27299.10 0.0%
Installations

Increase 20 69560 1.0% 85670 -13.0% 62920 0.0% 2,181.50 -5.0%
Installations '

Increase 50 69820 2.0% 71290 -28.0% 62920 0.0% 2,040.30 -11.0%

Figure 11. No. of Installation Variations Compared to Total Person Months

53

The second deployment parameter examined was Growth Level (G-Level). G-
level is the increase in software size SLOC/KDSI that is anticipated to be added for
modifications. When the value of the G-Level parameter was changed from 1 to 2, a 5%
decrease in the total support cost was identified with the maintenance category increasing
by 1 percent and the enhancement category decreasing by 13%. When the value was
increased from 1 to 5, a decrease of 11% was identified with a 2% increase in the
maintenance category and a 28% decrease the enhancement category. G-Level is a linear

multiplier to initial defects. See figure 12 for growth level percentages variations graph.

Growth Level Percentages Variations Compared to Total
Person Months
£ oo
: i B
< 1000000 P
S 800000 -
@ 6000.00 ~
S 400000 A
| 200000 7'/
|g 0.00 - . . - -
0% 100% 200% 300% 400% 500% 600%
y= 2250.26X +463.87 % Increase in Growth
R?=1
Growth
Level Maintenance Enhancements Growth Total
10% 202.00 307.00 188.40 697.40
25% 226.90 331.30 473.10 1,031.30
. 50% 269.70 370.20 949.80 1,589.70
75% 313.60 407.60 1,427.80 2,149.00
100% 358.40 443.80 1,906.80 2,709.00
200% 543.40 581.50 3,829.10 4,954.00
500% 1,128.20 965.70 9,628.30 11,722.20

Figure 12. Growth Level Percentage Variations Compared to Total Person Months

54

The third deployment parameter examined was Enhancement Level (E-Level). E-
level is a modifier to the internally estimated level of enhancement to the code. When the
value of the E-Level parameter was decreased from 1 to .5, a 23% decrease in the total
support effort was identified with the maintenance category increasing by .06 percent and
the enhancement category decreasing by 50%. When the value was increased from 1 to
1.5, a decrease of 23% was identified with a .05% increase in the maintenance category
and a 50% increase the enhancement category. E-Level is a linear multiplier to initial

defects. See figure 13 for the enhancement level variations graph.

E Level Compared to Total Person Months

3000.00 .
~— Maint.

€ 2500.00 Pt
9 / —— Enhance.
= 2000.00 —
c
S 1500.00 Growth
« 1000.00
£ 500.00 —3¢—Total
T 0.00 , : : :

0 0.5 1 1.5 2

E Level Variation

Paramet-er Values Maint. Change Enhance. Change Growth Change Total Change
]%;I;::aesle 0.5 64740 -0.06% 49140 -0.50% 629.20 0.00% 1,768.00 -0.23%
gi:lﬁt 1.0 68540 0.00% 984.50 0.00% 629.20 0.00% 2,299.10 0.00%
fl;clz;:::l 1.5 72250 0.05% 147830 0.50% 629.20 0.00% 2,830.00 0.23%

Figure 13. E-Level Variations Compared to Total Person Months

55

The next deployment parameter examined was Quality Level (Q-Level). Q-Level
is an input value that adjusts the models estimate for initial defects. When the value of
the Q-Level parameter was decreased from 1 to .5, a 30% decrease in the total support
effort was identified with the maintenance category increasing by 100 percent with the
- enhancement and growth categories remaining unchanged. When the Q-level value was
increased from 1 to 1.5, a decrease of 10% in the total support effort was identified with a
33% decrease in the maintenance category with the enhancement and growth categories

remaining unchanged. Q-Level is a linear multiplier to initial defects. See figure 14 for

quality level variations graph.

Q Level Variations Compared to Total Person Months

3500.00

3000.00 %
£ 2500.00 T~
5 \x\ e Mant.
E 2000.00 —g— Enhance.
£ 1500.00 ~a— Growth
a —y—Total
% 1000.00 ;\ —- a—
i 500.00 A———At‘:

0.00

0 0.2 0.4 0.6 0.8 1 12 1.4 1.6
Q Level Variations

Parameter Values Maint. Change Enhance. Change Growth Change Total Change

Q-Level
Decrease 0.5 1370.00 100.0% 984.50 0.0% 62920 00.0% 2,983.70 30.0%
Q-Level
Baseline 1.0 68540 0.00% 984.50 0.0% 62920 00.0% 2,299.10 0.0%
Q-Level
Increase 1.5 457.00 -33.0% 984.50 0.0% 62920 00.0% 2,070.70 -10.0%

Figure 14. Q-Level Variations Compared to Total Person Months

56

The fifth parameter analyzed was Growth factor. GPROFAC is a derived
parameter that includes skill levels, experience, productivity, and efficiency. When the
value of the paraméter was changed from 5 to 4, a 6 % increase in the total support effort
was identified with the growth category increasing by 24% and the enhancement and
maintenance categories remaining unchanged. When the value was increased from 5 to
6, a decrease of 4% in the total support effort was identified with a 16% decrease in the
growth category and no change to the maintenance and enhancement categories. See

figure 15 for GPROFAC variation graph.

GPROFAC Variations Compared to Total Person Months

3000.00

2500.00 -
2 % —x
5 2000.00 TS
£ 1500.00 —@-—Enhance.
§ 8 ey Growth
3 1000.00 - - - —¢—Total
-] b o
" 500.00 —— 2

0.00 : : : : :
3.5 4.0 45 50 55 6.0 6.5

GPROFAC Variations

Parameter Values Maint. Change Enhance. Change Growth Change Total Change
GPROFAC
Decrease 40 68540 0.0% 984.50 0.0% 77730 24.0% 2,44720 6.0%
GPROFAC
Baseline 5.0 68540 0.0% 984.50 0.0% 62920 0.0% 2,299.10 0.0%
GPROFAC
Increase 6.0 68540 0.0% 984.50 0.0% 527.00 -16.0% 2,196.90 -4.0%

Figure 15. GPROFAC Variations Compared to Total Person Months

57

The sixth parameter analyzed was Enhancements PROFAC (EPROFAC).
EPROFAC is a derived parameter that includes skill levels, experience, and productivity
as related to the enhancement activity. When the value of the parameter was changed
from 5 to 4 a 10 % increase in the total support effort was identified with the
enhancement category increasing by 23 percent and the growth and maintenance
categories remaining unchanged. When the EPROFAC parameter value was increased
from 5 to 6 a total support effort decrease of 7% was identified with a 16% decrease in
the enhancement category and with no change occurring in the maintenance and growth

categories. See figure 16 for EPROFAC variation graph.

EPROFAC Variations Compared to Total Person Months

3000.00

2500.00 M
< ——— N
é 2000.00 iad Mant,
e —&-Enhance.
o
g 1500.00 Growth
o '\
= 1000.00 — 3¢ Total
° i
F 500.00 2 2 2

0.00 . . - - -
3.5 4.0 4.5 5.0 55 6.0 6.5

EPROFAC Variations

Parameter Values Maint. Change Enhance. Change Growth Change Total Change
EPROFAC
Decrease 4.0 68540 0.0% 121480 23.0% 629.20 0.0% 2,529.40 10.0%
EPROFAC
Baseline 50 68540 0.0% 984.50 0.0% 62920 0.0% 2,299.10 0.0%
EPROFAC
Increase 60 68540 0.0% 82530 -16.0% 629.20 0.0% 2,139.90 -7.0%

Figure 16. EPROFAC Variations Compared to Total Person Months

58

The last parameter analyzed was Maintenance PROFAC (MPROFAC).
MPROFAC is derived parameter that includes skill levels, experience, and productivity
as related to the maintenance activity. When the value of the MPROFAC parameter was
changed from 5 to 4, a 7 % increase in the total support effort was identified with the
maintenance category increasing by 22 percent and the growth and enhancement
categories remaining unchanged. When the value of MPROFAC was increased from 5 to
6, a decrease of 5% was identified in the total support effort with a 15% decrease in the
maintenance category and no change to the enhancement and growth categories. See

figure 17 for MPROFAC variation graph.

MPROFAC Variations Compared to Total Person Months

3000.00

2500.00 “,.
2 * —
£ 2000.00 _e—Maint.
S 1500.00 —a—Enhance.
4 ’ —a— Growth
; 1000.00 - a— s —xTotal
o t\t A
" 500.00 & =0

0.00 : : : . :
3.5 4.0 45 50 55 6.0 6.5

MPROFAC Variations

Parameter Values Maint. Change Enhance. Change Growth Change Total Change

MPROFAC
Decrease 40 83630 22.0% 98450 0.0% 62920 0.0% 2,450.00 7.0%

MPROFAC
Baseline 50 68540 0.0% 984.50 0.0% 629.20 0.0% 2,299.10 0.0%
MPROFAC
Increase 6.0 57990 -15.0% 984.50 0.0% 629.20 0.0% 2,193.60 -5.%

Figure 17. MPROFAC Variations Compared to Total Person Months

The PRICE-S model output gives maintenance, enhancement, and growth as the
main support effort categories, refer to table 10 for the support effort in person months
and table 11 for the total support effort in dollars.

Table 10. Support Effort in Person Months Broken out by Categories and Year

PRICE-S Total System Support Costs for Twenty Years
Annual Costs in Person Months

YEAR | MAINTENANCE [ENHANCEMENT| GROWTH |[TOTAL
1998 103.50 22.10 8.70| 134.30
1999 116.70 57.50 23.80| 198.00
2000 85.40 81.40 35.70f 202.50
2001 62.40 95.90 44.50| 202.80
2002 47.90 102.30 50.70| 200.90
2003 38.70 102.60 54.20f 195.50
2004 32.60 98.10 55.50{ 186.20
2005 28.20 ' 89.90 55.10{ 173.20
2006 24.90 79.60 52.80f 157.30
2007 22.20 67.90 49.40| 139.50
2008 20.00 55.80 44.70| 120.50
2009 18.00 43.80 39.30| 101.10
2010 16.10 33.00 33.40 82.50
2011 14.20 23.40 27.20| 64.80
2012 12.60 15.30 21.00{ 48.90
2013 10.90 9.10 15.20| 35.20
2014 9.50 4.60 9.80 23.90
2015 8.20 1.90 5.50] 15.60
2016 7.00 0.50 2.30[9.80
2017 5.90 0.00 0.40{ 6.30
2018 0.40 0.00 0.00{ 0.40

TOTAL: 685.30 984.70 629.20{2299.20

Table 11. Total Support Effort Represented in Dollars

Total Person Labor
Months rate Hours Month Total Cost 20 Yrs
2299.20 * $100 * 152 =| $34,947,840

60

Year Compared Effort in Person Months
250.00

200.00 = “"x\\
150.00 / —e— MAINT.
* \ —m— ENHANCE.
—p— GROWTH
100.00 \ —— TOTAL
50.00

0.00 ‘ ‘ .
1995 2000 2005 2010 2015 2020

Year

Total Effort in Person Months

Figure 18. Year Compared to Category Effort in Person Months
The total support effort increases for the first four years and then begins to
decrease over the duration of the support effort. The maintenance category increases for
the first two years and then begins to decline for the remainder of the support effort. The
enhancement category increases for the first six years and then decreases for the

remainder of the support effort. The last category growth increases for the first seven

" years and then decreases over the remainder of the support effort.

Upon interviewing Jim Otte at PRICE Systems, the following parameters within
the model where identified as the basis for the maintenance effort. The first parameter
was the program size or the SLOC of the software program. The second parameter was
application (APPL) with a normal range from .866 to 10.952. The larger the value for
APPL the more difficult the programming task in nature. APPL represents an inherent
instruction complexity, independent of the variations in schedule, operating environment
and system utilization. As the value for APPL goes up the propensity for errors goes up
as well. The third parameter was platform, which had a normal the range of 0.6 to 2.5.

PLTFM describes the customer's planned operating environment requirements. Itisa

61

measure of the portability, reliability, structuring, testing and documentation required for
acceptable contract performance. The key to selecting the appropriate value for PLTFM
is not the location of software, but the specification and testing which the software must
be meet. Costs and schedules for software development are strongly driven by the
severity of the requirements, which must be satisfied for acceptable contract
performance. The following options/values can be found under PLTFM for military
software: Ground Environment 1.2, Mobile (Van Or Shipboard) 1.4, Airborne 1.8. The
second category under PLTFM related to military software is Space software with the
following options/values being found under PLTFM: Unmanned 2.0 and Manned 2.5.
Space software has higher parameter values due to the inherent risk need to demonstrate
extremely high reliability. The consequences of failure are extremely severe with space
software due to the lives involved. The only permissible failure mode is an alternate
system. Software failure could potentially cost personnel, the mission, and/or the
program/project. As the value for PLTFM goes up, software testing is performed more
thoroughly for military and space software.

The fourth parameter value was utilization. UTIL is the fraction of available
hardware cycle time or total memory capacity used by the software program. It describes -
the extra effort needed to adapt software to operate within limited processor capabilities.

A UTIL value of .5 or less represents normal problems and a value higher than .5
represents problems that are not ordinary. The UTIL dialog box allows you to enter both
timing and memory utilization and then computes a composite utilization fraction using
the following equation:

(UTILtiming) (0.955 - UTILmemory) +(0.95)(UTILmemory) - 0.475 (D

62

The compression of the software schedule does have an effect on the model
estimate of the support effort. If the schedule is compressed then the PRICE-S model
will estimate more defects in the support effort. The researchers were given additional
information to consider from Mr. Otte on how to handle situations in which the software
is developed by a different organization than the organization that will be handling the
post deployment support effort. If a government organization will support the software
then the development PROFAC should be lower causing an increase in the support
effort/cost. If the development and support are handled by the same organization then no
adjustment is needed. If the support contractor is included in integration and testing then
PROFAC should be increased by approximately .5 to account for the contractor
assistance.

The database used in the PRICE-S model is comprised of four hundred and fifteen
CSCI’s and Projects. It includes application in a commercial, military, and a space
environment. The platforms range from management information systems (MIS), to
manned space with everything from avionics to ship/mobile in between. The database is
also categorized into the 7 different language categories. The seven categories include
Ada, FORTRAN, C++, JOVIAL, Assembly, 4GL, and other languages. The total SLOC
for each language is given as well as the percentage of software program found in a given
platform. Table 12 provides a summary of database and the category breakouts. The
data represented in the table are from 1992. Therefore, the database composition has
more than likely changed since the given time frame, but it is represented here to give the
user of the model an idea of the types of software programs that are in included in the

database.

63

Table 12. PRICE-S Database Composition

APPLICATION
Commercial Ada | FORTRAN | C++ | JOVIAL | ASSY | 4GL | Other
Internal 0% 1% 0% 0% 0% 9% 6%
MIS 0% 0% 80% 0% 19% | 86% 16%
Avionics 5% 13% 0% 5% 10% 0% 9%
Military
Ground 9% 10% 16% 0% 10% 4% 14%
Ship/Mobile 24% 34% 0% 10% 20% 0% 26%
Airborne 48% 8% 0% 49% 26% 0% 16%
Missile 4% 3% 0% 10% 4% 0% 4%
Unmanned
Space 10% 3% 0% 5% 1% 0% 1%
Manned
Space 0% 25% 0% 21% 9% 0% 7%
Other 0% 2% 4% 0% 1% 1% 1%
2040
Total SLOC 5025K 5836K 938K | 7775K | 6800K | K 7820K
ADA 1984 | - Current Age 1975 to 1992
FORTRAN 1975 | - Current Number of CSCI/Projects 45
C++ 1989 | - Current Note: SLOC range per software package
was 1,000 — 2,000,000
JOVIAL 1975 | - Current
ASSY 1975 | - Current
4GL 1979 | - Current
Other 1979 | - Current

64

SEER-SEM

SEER-SEM estimates staffing, effort months of maintenance sub-divided into
categories, and cost. The specific cost elements are: Average Staff Level, Corrective
Maintenance, Adaptive Maintenance, Perfective Maintenance, and Enhancement
Maintenance. The cost elements are summed and a total per year and a cumulative total
for both effort and cost are provided. Average staff level refers to the number of people
required to maintain the software in a given year. Corrective maintenance is the effort
spent correcting software problems, fixing bugs, and addressing design flaws. Adaptive
maintenance is the effort spent adapting the software to the current environfnent,
including updating to the latest operating system, compilers, hardware devices, etc.
Perfective maintenance is the effort spent fine tuning and perfecting the software,
including adjusting control or data files, refining performance issues, and other finishing
touches. Enhancement maintenance is the effort to add minor enhancements; major re-

engineering is typically estimated as a redevelopment.

No specific line item for program management or updating the documentation is
provided in the support report or inputs, although a labor category report does show the
breakouts. A source line of code (SLOC) is defined as a non-comment software source
instruction. - Included in SLOC is executable source lines, control, mathematical,
conditional, input/output formatting, data declarations, and deliverable job control
language (JCL). Comments, blanks, begin statements, separate physical lines for
convenience, machine/library generated statements, non-final test code, and debug

statements do not count as a SLOC.

65

The model does have an input for various software languages, but no changes to

the support cost were found by the researchers (refer to Table 13), however, some

languages require more lines of code to deliver the same functionality.

Table 13. SEER-SEM Changes from Baseline

SEER-SEM Baseline| 44,596,872

Decrease Change Increase Change
LINES
Function Implementation Mechanism N/A N/A
CSClIs Included In Size N/A N/A
PERSONNEL CAPABILITIES & EXPERIENCE
Analyst Capabilities 47,309,841 6.08%| 42,379,814 -4.97%
Analyst's Application Experience 47,369,418 6.22%| 42,461,736 -4.79%
Programmer Capabilities 47,453,878 6.41% 42,492,465 -4.72%
Programmer's Language Experience | 44,820,457 0.50%| 44,495,542 -0.23%
Host System Experience 45,025,969 0.96%| 44,430,511 -0.37%
Target System Experience 44,890,239 0.66%| 44,492,085 -0.23%
Practices & Methods Experience 44,596,872 0.00%| 44,596,872 0.00%
DEVELOPMENT SUPPORT ENVIRONMENT
Modemn Development Practices Use 47,376,293 6.23%| 42,203,070 -5.37%
Automated Tools Use 45,940,301 3.01%| 43,252,167 -3.02%
Logon thru Hardcopy Turnaround 43,354,588) -2.79%| 46,073,614 3.31%
Terminal Response Time 44,173,638 -0.95%| 45,301,982 1.58%
Multiple Site Development 44,596,872 0.00%| 45,669,327 2.40%
Resource Dedication 46,745,995 4.82%| 44,596,872 0.00%
Resource and Support Location 44,596,872 0.00%| 46,745,995 4.82%
Host System Volatility 43,598,448 -2.24%| 45,599,037 2.25%
Process Volatility 43,305,277 -2.90%! 45,721,327 2.52%
PRODUCT DEVELOPMENT REQUIREMENTS
Requirements Volatility (Change) 43,294,803 -2.92%| 47,219,993 5.88%
Specification Level — Reliability 43,058,845 -3.45%| 45,734,168 2.55%
Test Level - 44308,319] -0.65%| 44,798,170 0.45%
Quality Assurance Level 44,376,840 -0.49%| 44,705,552 0.24%
Rehost from Development to Target 40,202,704 -9.85%| 48,996,283 9.86%
PRODUCT REUSABILITY REQUIREMENTS
Reusability Level Required 44,596,872 0.00%| 46,207,138 3.61%
Software Impacted by Reuse
DEVELOPMENT ENVIRONMENT COMPLEXITY
Language Type (complexity) 44,456,369 -0.32%| 44,774,951 0.40%
Host Development System 44,383,698 -0.48%| 44,887,651 0.65%
Complexity
Application Class Complexity 41,841,012 -6.18%| 45,140,964 1.22%
Process Improvement 44,596,872 10.00% 44,596,872 |0.00%

66

Table 13. SEER-SEM Changes from Baseline (Continued)

TARGET ENVIRONMENT
Special Display Requirements 42,727,587 -4.19%| 45,835,723 2.78%
Memory Constraints 43,744,711 -191%| 46,137,601 3.45%
Time Constraints 43,217,177 -3.09%| 46,505,601 4.28%
Real Time Code 43,307,352] -2.89%| 46,152,530 3.49%
Target System Complexity 44,459,349 -0.31%| 44,776,110 0.40%
Target System Volatility 43,714,437] -1.98%| 44,562,858 -0.08%
Security Requirements 44,596,872 0.00%| 53,842,775] 20.73%
SCHEDULE & STAFFING CONSIDERATIONS
Required Schedule (Calendar Mos) N/A N/A
Start Date N/A N/A
Complexity (Staffing) 42,795,787, -4.04%| 46,730,624 4.78%
Staff Loading N/A N/A
RISK ANALYSIS N/A N/A
REQUIREMENTS N/A N/A
SYSTEM INTEGRATION N/A N/A
ECONOMIC FACTORS N/A N/A
SOFTWARE MAINTENANCE
Years of Maintenance N/A N/A
Separate Sites See Figure 19
Maintenance Growth Over Life See Figure 20
Personnel Differences 46,265,226 3.74%| 43,007,376 -3.56%
Development Environment 46,350,551 3.93%| 42,988,222 -3.61%
Differences
Annual Change Rate See Figure 21
Maintenance Level (Rigor) 42,924.490, -3.75%| 48,499,099 8.75%
Min Maintenance Staff (Optional) N/A N/A
Max Maintenance Staff (Optional) N/A N/A
Maintenance Monthly Labor Rate N/A N/A
Additional Annual Maintenance Cost N/A N/A
Maintenance Start Date N/A N/A
Percent To Be Maintained See Figure 22
Maintain Total System N/A N/A
SOFTWARE CODE METRICS (Optional)
ESTIMATE TO COMPLETE
ADJUSTMENT FACTORS

No Knowledge Ada Development
Development Method 56,589,253] 26.89%| 60,307,753] 35.23%

Note: N/A means this parameter was not addressed during the evaluation. An increase
or decrease was determined by a one unit incremental shift in the parameter. An example
of a decrease in a parameter input would be a Low, Nom, and Hi would be changed to a

Low -, Nom-, and Hi- for the parameter input evaluation. See Appendix C for the

baseline inputs.

67

Model development factors may have a significant impact on the support cost.
Please refer to Table 13. A change in Security from unclassified to classified increased
the support cost by over 20%. A change in the Development Method from Waterfall to
Ada Development also showed a dramatic increase in support cost, over 35% (Tablel3).
Figures 23 and 24 show the support effort by category and year.

Software Maintenance unique inputs are:

Years of Maintenance

Separate Sites

Maintenance Growth over Life
Personnel Differences

Development Environment Differences
Annual change Rate

Maintenance Level (Rigor)

Min Maintenance Staff (Optional)
Max Maintenance Staff (Optional)
Maintenance Monthly Labor Rate
Additional Annual Maintenance Cost
Maintenance Start Date

Percent to be Maintained

Maintain Total System

These are defined as follows:

Years of Maintenance. the number of years for which support will be estimated.
Maintenance/Support begins when operational test and evaluation is complete.

Separate Sites. The number of operational sites where software will be installed and the
users will have input into enhancements.

Maintenance Growth over Life. The anticipated size growth from the point immediately
after software is turned over to maintenance to the end of support.

Personnel Differences. Comparison of the development and maintenance personnel’s
capabilities and experience.

Development Environment Differences. Rates the quality of the maintenance
environment in comparison to the development environment.

Annual change Rate. Average percentage of the software impacted by software
maintenance and sustaining engineering per year.

68

Maintenance Level (Rigor). Rates the thoroughness with which maintenance will be
performed.

Min Maintenance Staff (Optional). Minimum number of personnel who will be assigned
to support the software.

Max Maintenance Staff (Optional). Maximum number of personnel who will be assigned
to support the software.

Maintenance Monthly Labor Rate. Average monthly labor rate for support personnel.

Additional Annual Maintenance Cost. Any annual throughput cost for support

Maintenance Start Date. Date on which support will begin. Default is when operational
test and evaluation is completed.

Percent to be Maintained. The percentage of the total that will be supported.

Maintain Total System. Determines whether total size or effective size should be used to
estimate maintenance.

(Please see Table 13/Figures 19 - 22 for the percentage changes of a one increment
change (decrease and increase) in any maintenance unique inputs. Table 14 illustrates
total effort by categories.)

SEER-SEM Separate Sites

55.000 -

50.000 /
=
%

45.000 /

40.000 , K _ . ' ‘
0 2 4 6 8 10 12
y = 1.0675x + 43.514 Number of Sites
R2=1
Sites ™M

1 44.597

2 45.648

5 48.826

10 54.200

Figure 19. SEER-SEM Separate Site Changes

69

SEER-SEM Maintenance Growth Over Life

100.000
90.000
80.000 /
E 70000 —
60.000
50.000 7/
40.000 e ——

y=05016x+3944710 20 30 40 50 60 70 80 90 100

R?=0.9997 % Growth
% M % $M
5 42.250 50 64.068
10 44.597 100 89.864
25 51.760

Figure 20. SEER-SEM Maintenance Growth Over Life Changes

SEER-SEM Annual Change Rate

100.000 -
90.000
80.000
£ 70000 .
60.000 /
50.000 ¢
40000 | &4— "~ = O OO0
0 10 20 30 40 50 60 70 80 90 100
y = 0.3455x + 41.072 %
R?=0.9998
% ™M % ™M
5 42.952 50 58.105
10 44.597 100 75.754
25 49.592

Figure 21. SEER-SEM Annual Change Rate Changes

70

SEER-SEM % to be Maintained

55.000 -
45.000 n
= 35000 /
(-2
25.000 -‘/
15.000 , . : : : : :
40 50 60 70 80 90 100 110
y =0.5018x - 5.7901 %
R? = 0.9997
% M % ™M
50 19.412 90 39.300
80 34.120 100 44.597

Figure 22. SEER-SEM % to be Maintained Changes

Effort Months

350.0 - SEER-SEM Maintenance Effort

300.0 —A
250.0 '—\Y

200.0
150.0 \\ :

100.0 j;
50.0 + '\ :2\\

0- 0 T T T T H T 1
1998 2002 2006 2010 2014 2018 2022
Years
—=— Correct —— Adapt Perfect —e—Enhance |

Figure 23. SEER-SEM Maintenance Effort by Category

SEER-SEM Maintenance Effort by Year

2014

2018

7.000 -
6.000
. 5.000 —f\
g 4000 [\
% so00 | X |
8 ¢\
2.000 -
1.000
0.000 : ; '
1998 2002 2006 2010
Years
Year Cost ($M)
1998 2471
1999 5.862
2000 3.455
2001- 2017 1.861
2018 1.177

Figure 24. SEER-SEM Maintenance Effort by Year

Table 14. SEER-SEM Total Support Effort by Categories

Fiscal
Year
1998
1999
2000
2001

2002
2003
2004
2005
2006
2007
2008
2009
2010
2011

2012
2013
2014
2015
2016
2017
2018

Effort Months

Correct Adapt Perfect Enhance Total
2924 442 285.0 326 654.2
2815 882 333.2 88.9 791.7
79.7 90.8 141.6 107.1 419.2
34.6 75.4 81.0 91.1 282.2
346 75.4 81.0 91.1 2822
34.6 75.4 81.0 91.1 282.2
346 75.4 81.0 91.1 282.2
346 75.4 81.0 91.1 282.2
346 75.4 81.0 91.1 2822
346 75.4 81.0 91.1 282.2
34.6 75.4 81.0 91.1 282.2
34.6 75.4 81.0 91.1 282.2
34.6 75.4 81.0 91.1 2822
34.6 75.4 81.0 91.1 2822
346 75.4 81.0 91.1 282.2
346 75.4 81.0 91.1 282.2
346 754 81.0 91.1 282.2
34.6 75.4 81.0 91.1 2822
346 75.4 81.0 91.1 2822
346 75.4 81.0 91.1 2822
10.2 277 29.8 334 101.1

Base Year
Cost
9,944,596
12,034,101
6,371,501
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
4,289,502
1,637,067

Base Year
Cumulafive
9,944 596
21,978,697
28,350,198
32,639,700
36,929,202
41,218,704
45,508,206
49,797,708
54,087,210
58,376,712
62,666,214
66,955,716
71,245,218
75,534,720
79,824,222
84,113,724
88,403,226
92,692,728
96,982,230
101,271,732
102,808,799

72

SOFTCOST-00

SoftCost-O0 estimates staffing and cost. The specific cost elements are Total
Staff, Maintenance Staff, and Sustaining Staff. Cost is effort times the specified hourly
pay rate. The model also provides a Present Value estimate based on the estimated cost
and user supplied Cost of Money percentage. Total Staff refers to the total number of
maintenance and sustaining staff needed for each year. Maintenance Staff is the number
of staff needed to perform scheduled changes or upgrades to the system each year.
Sustaining Staff is the number of support personnel required to sustain the system each
year and is based on the Sustaining Engineering Factor.

No input or output is provided for the cost of updating documentation or for
program management. Source Lines of Code (SLOC) or Function Points (FPs) may be
used. SLOC excludes comments, but includes data declarations, instantiations, and
program specifications. A SoftCost-OO source line is defined by a terminal semicolon
with instantiated code counted onée. Function Points (FP) must be a value between 25
and 40,000 and represents the size of the system based upon counts of external inputs,
external outputs, internal files, operating modes, rendezvous, stimulus/response
relationships, external inquires, and external interfaces. The FP counts may be derived
from the system or the software requirements specification.

The model comes loaded with three calibration files for using the Ada, Object
Oriented, or C++ programming languages. The user may also make a new calibration
file if required. The researchers created a new calibration file by copying the scada.cal
file into notepad and changing the hours per month to 152 hours, and then saving the file

back into SoftCost-OO as thscada.cal. The researchers discovered the model was going

73

back to the calibration file for every calculation and was not holding changed inputs for

the hours per month. Once the calibration file was updated, the hours-per-month was

accurate for the research effort.
The model’s development inputs may have a significant impact on the support
cost. Numerous development inputs changed support cost by more than 15-30% for a

one increment change in the factor. See table 15 for development parameter changes.

Software Support unique inputs are:

Nominal Effort (person-months)
Nominal Duration (months)
Sustaining Engineering Factor (%)
Annual Change Traffic (%)
Product Life (years)

Cost of Money (%)

These are defined as follows:

Nominal Effort (person-months). The amount of effort to develop the software
system. May use estimated value from SoftCost-OO, actuals from a project, of

users estimate.

Nominal Duration (months). The amount of time to develop the software
system. May use estimated value from SoftCost-OO, actuals from a project, of

users estimate.

Sustaining Engineering Factor (%). An estimate of the percentage of the total
0&S effort that will be devoted to sustaining engineering tasks; the amount of

sustaining engineering the system will receive during O&S, including user
support and training, planned upgrades, and unscheduled repairs. SoftCost-OO
defined the Sustaining Engineering Factor as the fraction of the Development
workforce that will be assigned to the sustaining engineering task during O&S.

Annual Change Traffic (%). An estimate of the percentage of source code that
will undergo change during a typical year.

Product Life (years). The éxpected life of the software system, 3 to 20 years inclusive.

Cost of Money (%). Represents the cost of capital financing. Used for the Present Value
calculations.

74

Table 15. SoftCost-O0O Development Input Parameter Changes

SoftCost-OO Development Inputs

Baseline $57,551,500

Chg Decrease | %Chg | Chg Increase %Chg

PROJECT FACTORS

Type of Software N/A

System Architecture 57,551,500 | 0.0% 74,818,800 | 30.0%

Number of Organizations Involved 57,551,500 | 0.0% 60,748,300 5.6%

Staff Resource Availability 65,204,900 | 13.3% 52,990,100 | -7.9%

Computer Resource Availability 66,471,000 | 15.5% 49,630,800 | -13.8%

2-2 2-2
1-1 1-2
1-1 1-2
Organizational Interface Complexity 3-2 56,272,800 | -2.2% | 3-4 | 60,748,300 5.6%
3-2 3-4
3-2 3-4
3-2 3-4

Security Requirements 54,674,400 | -5.0% 63,305,700 | 10.0%

PROCESS FACTORS

Degree of Standardization 4-3 | 48,364,200 | -16.0% | 4-5 | 62,383,400 8.4%
Scope of Support 3-2 | 54,674,000 | -5.0% | 3-4 | 74,818,800 | 30.0%
_ [Use of Modern Software Methods 3-2 72,194,400 | 25.4% | 3-4 | 46,592,700 | -19.0%
Use of Peer Reviews 3-2 | 63,305,700 | 10.0% | 3-4 | 54,674,400 | -5.0%
Use of Software Tools/Environment 3-2 69,003200 | 19.9% | 3-4 | 53,582,400 | -6.9%
Software Tool/Environment Stability | 3-2 | 64,459,300 | 12.0% | 3-4 | 55,823,400 | -3.0%
PRODUCT FACTORS
Technology Usage Factor 3-2 75,439,200 | 31.1% | 3-4 | 68,972,100 | 19.8%
Product Complexity 3-2 | 48,920,100 | -15.0% | 3-4 | 67,910,900 | 18.0%
Requirements Volatility 3-2 | 50,643,600 | -12.0% | 3-4 | 66,761,900 | 16.0%
Degree of Optimization 3-2 | 49,494,600 | -14.0% | 3-4 | 62,156,700 8.0%
Degree of Real-Time 3-2 | 46,617,500 [-19.0% | 3-4 | 68,326,900 | 18.7%
Re-use Benefits 3-2 | 70,260,700 | 22.1% | 3-4 | 46,099,600 | -19.9%
Re-use Costs 3-2 | 49,747,300 | -13.6% | 3-4 | 55,036,400 | -4.4%
Database Size 3-2 | 54,099,900 | -6.0% | 3-4 | 61,003,100 6.0%
PERSONNEL FACTORS
Number of 00 Projects Completed - 57,551,500 | 0.0% - 44,453,900 | -22.8%

Analyst Capability 71,941,700 | 25.0% 49,494,600 | -14.0%

Applications Experience 67,910,900 | 18.0% 51,797,300 | -10.0%

48,920,100 | -15.0%

Language Experience 67,336,400 | 17.0% 51,797,300 | -10.0%

Methodology Experience 71,362,500 | 24.0% 49,494,600 | -14.0%

W W[W] W] W W} w
]
S I N o B 2

1-1
3-2
3-2
Environment Experience 3-2 63,305,700 | 10.0%
3-2
3-2
3-2

63,305,700 | 10.0% 51,797,300 | -10.0%

Team Capability

Please see Figures 25 and 26 for the percentage changes or equations. Nominal Effort,

nominal duration, and cost of money was not adjusted for this research effort. Figure 27

75

shows SoftCost-OO’s 20-year support cost and Table 16 shows the 20 year support

effort.

Softcost-O0 Sustaining Engineering

800.000 -
600.000 el

S 400.000 /
& /
200.000
0.000 -

0 10 20 30 40 50 60 70 80 90 100

y=5.7551x + 57.551 %
R%=1
% M % t™M
0 57.552 25 201.400
5 86.327 50 345.300
10 115.100 75 489.200
15 143.900 99 627.300

Figure 25. SoftCost-OO Sustaining Engineering

Softcost-OO Annual Change Traffic

800.000 -
600.000
S 400.000 /
=3 /
200.000
0.000 ‘/" : : : . : ‘ .
0O 10 20 30 40 50 60 70 8 90 100
| y=5.7547x +0.0263 %
R2=1
% M % M
10 57.555 75 431.600
25 143.900 100 575.500
50 287.800

Figure 26. SoftCost-O0O Annual Change Traffic

76

Cost($M)

SoftCost-O0 Life-Cycle Cost by Year

3.500 -
3.400 |
3.300 Al
3.200 |\
3.100 \
3.000
2.900 \
2800 0000000000000
2.700
2600 F—— ey
0 2 4 6 8 10 12 14 16 18 20
Years
Year Cost (M)
1 3.402
2 3.119
3.20 2.835

Figure 27. SoftCost-OO 20 Year Support Cost

Table 16. SoftCost-OO 20-year Support Effort

Year

NZaloaronidoeNoarwna

Total
Staff
18.7
171
15.5
15.5
16.5
15.5
15.5
16.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5

Maintenance Sustaining
Staff

Staff
18.7
17.1

16.5
16.5
15.5
16.5
15.5
16.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5
15.5
16.5
15.5
16.5
15.5

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Total
Cost
3,402,100.0
3,118,600.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0
2,835,000.0

77

SoftCost-O0’s Life Cycle Cost Model, SoftCost-LC, uses the following equation when

performing an unconstrained estimate:

MM, = A * (MMpom * EAFy * ACT) + (MMuom * SEF,))

Where: MM., = Annual O&S Phase Effort
A = Calibration Coefficient
MM om = Nominal Development Effort
EAF, = Effort Adjustment Factor
ACT = Annual Change Traffic
SEF, = Sustaining Engineering Factor

MM,om = TC * (SIZE)™

Where: TC = Effort Technology Constant
SIZE = Size of Software System
P1 = Effort Exponent

The acronyms are defined as follows:

Calibration Coefficient. The combined effects of all the SoftCost-OO
constants, cost drivers, and multipliers. Estimated by SoftCost-OO, but may
be manually input.

Nominal Development Effort. Amount of effort required to initially develop
the software system. Estimated by SoftCost-OO, but may be manually input.

Effort Adjustment Factor. Determined by SoftCost by recalibrating seven
parameters (usage factor, degree of real-time, modern programming methods,
computer resource availability, staff resource availability, degree of reuse, and
use of software tools/environment).

Annual Change Traffic. An estimate of the percentage of source code that will
undergo change during a typical year.

Sustaining Engineering Factor. An estimate of the percentage of the total O&S
effort that will be devoted to sustaining engineering tasks.

During load balancing estimates, the equation becomes constrained.

A * (MMnom * SEFa) = C"A * (MMnom * EAFm * ACT) and
A * (MMaom * EAFp * ACT) = C-A * (MMom * SEF,)

Where C = a constant representing the workforce level.

78

SoftEst.

The SoftEst model gave an estimate of $91.2M for the 20-year maintenance
period. The support costs were not categorized or broken out into the maintenance,
. enhancement, and growth category in the maintenance report; however, SoftEst assumes
that the maintenance effort is comprised of both error corrections and small software
enhancements which are new. The ACT method used by SoftEst to calculate the support
cost/effort is comprised of the following equation:

Mmam = (MMnom) ACT II (MF1).

MMnom = equal to A * ((KDSI) ~ B) * Fi).
A = coefficient
B = exponent
MFi = a product of a group of maintenance environmental factors
Fi = a product of a group of development environmental factors
KDSI = the delivered source instructions in thousands
ACT = Annual Change Traffic

The coefficient A, the exponent B, and the MFi value are determined by statistical means
from a group of previously completed projects. Annual Change Traffic (ACT) represents
the amount source instructions that will be changed on a yearly basis in the support effort.
The change in source instructions can be comprised of both modifications and additions
to the original software. MFi is a set of maintenance environment factors that are similar
to the standard environmental factors with the exception to modern programming
practices (MOPD) and required reliability (RELY). These two parameters have different
maintenance look-up settings/values assigned to them for estimating the support

costs/effort. The underlying logic for the usage of the two development parameters

79

for the support effort calculation is that modern programming practices and required
reliability will normally result in less initial errors in the developed effort of the software,
which in turn leads to less support in thé future. A support cost value is then given for
each year that suppoft is to be performed for the required number of years that the user
desires to support the given system. The model does not include a line item break out
showing the costs associated with documentation or the cost of program management,
thus a lump sum cost for the entire effort is shown for the support. It is assumed in the
model that required reliability is highly correlated with the level and type of
documentation required with a given project. A high reliability level would normally
result in a formal level of reviews and documentation. This could be used to adjust for
the varying levels of documentation the system.

The first step of the analysis was to identify the categories of parameters that
affect the support effort. SoftEst has two main input sections: environment and
maintenance. Softest also has three additional input screens: size, cost, and architecture.
The first section analyzed was the environmental parameter section, which represents or
characterizes the software project. Table 17 represents the changes (one unit
increase/decrease in the parameter values) made to the environment parameters in
CSCI 1. The environment parameter that was identified to have the greatest impact on
the support effort/cost in increasing the parameter value for CSCI 1 was the required
reliability parameter. The required reliability parameter quantifies the extra effort that is
often associated with higher levels of reliability in the end product. If the software is
going into a system where the loss of life is possible, then extra effort will be expended in

the verification and validation activities. This was one of the values that previously

80

descriptions/values for required reliability is from slight inconvenience (VL) to possible
loss of life and trusted computer security systems extra high (XH). An increase in the
required reliability parameter value from HI to VH resulted in a cost increase to $6.9M or
a 5.66% increase from the baseline cost. A decrease in the required reliability parameter
value from HI to NM resulted in a cost decrease to $6.3M or a 3.40% decrease from the
baseline cost. Figure 28 shows the variations in the required reliability values compared

to the support cost for CSCI 1.

Required Reliability Variations Compared to Support Cost

$7.00
$6.80
$6.60
$6.40
$6.20

$(M)

0 0.5 1 1.5 2 25 3 35

. 1=NM 2=Hi 3=VH
y = 0.2957x + 5.9871

R?=0.9796 Required Reliability

NM HI VH
$6.90M $6.53M $6.31M

Figure 28. Required Reliability Compared to Support Cost CSCI 1.

The énvironment parameter that was identified to have the greatest impact on the
support effort/cost in decreasing the parameter value for CSCI 1 was the required analyst
capability parameter. The analyst capability parameter is a measure of the effectiveness
of the system engineering and software design team. The analysts perform a review of
the project requirements and specifications, define the architecture, and produce the

preliminary design specifications. The range of parameter descriptions for analyst

81

capability is from new personnel with no demonstrated capability (VL) to strong team
with many highly capable personnel (VH). A decrease in the experience attribute value
from NM to LO resulted in a cost decrease to $6.9M or a 4.95% increase from the
baseline cost. An increase in the analyst capability parameter value from NM to HI

. resulted in a cost decrease to $6.3M or a 3.65% decrease from the baseline cost.

Figure 29 shows the variations in the analyst capability parameter values compared to the

support cost for CSCI 1.

Analyst Capability Compared to Support Cost for CSCI 1

$7.00

$6.80
s g ~
$6.20 . . A . B
0 0.5 1 15 2 25 3 35
1=NM 2= H 3=VH

y = -0.2806x + 7.1187

Analyst Capability
R? = 0.9924

LO NM HI
$6.39M $6.53M $6.85M

Figure 29. Analyst Capability Compared to Support Cost CSCI 1.

The environment parameter that was identified to have the greatest negative
impact on the support effort/cost in decreasing the parameter values for CSCI 1 was the
product complexity parameter. The product complexity parameter quantifies the extra
effort needed with the complexity of the software product being developed. The range of

parameter descriptions/values for product complexity is from offline simple print

82

routines, small utilities (VL) to signal processing algorithms, complex algorithms,
CSCI’s greater than approximately 150 KDSI, or applications with high security levels.
A decrease in the product complexity parameter value from NM to LO resulted in a cost
decrease to $6.3M or a 3.91% decrease from the baseline cost, see table 17. An increase

in the product complexity attribute value from NM to HI resulted in a cost increase to

$6.8M or a 3.91% increase from the baseline cost. Figure 30 shows the variations in the

product complexity values compared to the support cost for CSCI 1.

Product Complexity Compared to Support Cost for CSCI 1

$7.00
3 55
¥ $6.40
$6.20 ‘ . . ‘ . _
0 0.5 1 1.5 2 25 3 3.5
y = 0.2551x + 6.0191 1=L0 2=NM 3=HI
R=1 Product Complexity

LO NM HI
6.27T™M 6.53M 6.78M

Figure 30. Product Complexity Compared to Support Cost CSCI 1.

In sﬁmmary for CSCI 1, when the parameters are changed by a one-unit decrease,
seven out of the eighteen parameters decreased the support cost, while the remaining
attributes increased the support cost. When the parameters were changed by a one-unit
decrease, seven out of the nineteen parameters decreased the support cost, while eight

attributes increased the support cost and three parameters were not affected.

83

Table 17. SoftEst Parameter Changes and Effects on Support Costs CSCI 1

CSCI 1 Parameters Year 1 Support Cost $6,529,209
Parameter New Parameter New

Parameter Change Dec.| Cost |Change|ChangeInc.;] Cost |Change
Analyst

1 |Capability NM-LO |$6,852,285| 4.95% | NM-HI [$6,291,154| -3.65%
Programmer

2 |Capability NM-LO [$6,818,276| 4.43% | NM-HI [$6,291,154} -3.65%
Application -

3 |Experience NM-LO [$6,750,260(3.39% [NM-HI [$6,376,172| -2.34%
Virtual Machine

4 |Experience NM-LO [$6,699,249| 2.60% | NM-HI [$6,359,170| -2.60%
Language

5 |Experience NM-LO [$6,648,238| 1.82% | NM-HI [$6,444,188| -1.30%
Processing Time

6 |Constraints NM-LO [$6,529,209| 0.00% | NM-HI [$6,716,253| 2.86%
Hardware Storage , _

7 |Constraints NM-LO [$6,529,209| 0.00% | NM-HI [$6,631,234] 1.56%
Virtual Machine

8 |Volatility NM-LO |$6,308,156|-3.39% | NM-HI |$6,784,268| 3.91%
Development
Turn Around

9 (Time NM-LO |$6,308,156|-3.39% | NM-HI [$6,648,238| 1.82%
Requirements

10| Volatility NM-LO [$6,376,172| -2.34% | NM-HI |$6,852,285| 4.95%
Required

11 [Reliability HI-NM [$6,307,418| -3.40% | HI-NM |$6,898,860| 5.66%

12 |Data Base Size NM-LO [$6,427,816]-1.55% | NM-HI [$6,665,241| 2.08%
Product

13 |Complexity NM-LO ($6,274,149|-3.91% | NM-HI [$6,784,268| 3.91%

14 |Design For Reuse] NM-LO {$6,529,209| 0.00% | NM-HI [$6,699,249| 2.60%
Modern
Development

15|Practices NM-LO [$6,699,249| 2.60% | NM-HI [$6,376,172| -2.34%
Use Of

16 |Automated Tools| NM-LO |$6,699,249| 2.60% | NM-HI [$6,376,172| -2.34%
Classified v

17 (Environment UNCL - CL ($6,699,249| 2.60% |UNCL — CL |$6,699,249| 2.60%
Schedule NM unable NM unable to

18 |Constraints to change - - change - -

MAN AIR -
UNMAN MAN AIR -
19 [Platform Risk AIR $6,340,276| -2.89% |UNMAN SP|$6,718,142| 2.89%

84

The environment parameter that was identified to have the greatest impact on the
support effort/cost in increasing the parameter value for CSCI 2 was once again the
required reliability parameter. An increase in the required reliability parameter value
from HI to VH resulted in a cost increase to $7.2M or a 10.95% increase from the
baseline cost. A decrease in the required reliability parameter value from HI to NM
resulted in a cost decrease to $6.1M or a 6.57% decrease from the baseline cost. Figure
31 shows the variations in the required reliability values compared to the support cost for

CSCI 2.

Required Reliability Year 1 CSCIl 2

% $7.40
O $7.20
8 $7.00
8 $6.80
£ S s6.60 =
=2 g640 /"
S $620
@
% $6.00 S
.g $5.80 , , ‘ ; ‘ :
0 0.5 1 15 2 25 3 35
y = 0.572x + 5.4806 1=NM 2=Hi 3=VH
R2=0.9796 Required Reliability
LO NM HI

$6.10 $6.53 $7.24

Figure 31. Required Reliability Compared to Support Cost CSCI 2.

The second largest percentage change for an increase in the environment
parameters for CSCI 2 was the requirements volatility parameter. The requirements
volatility parameter measures the amount of project design and development rework that

is the result of changes in the users requirements for system. The changes will normally

85

start with an engineering change proposal from a contractor or a request for change from
the user. For a military program a setting of high should be used as a minimum. An
increase in the requirements volatility parameter value from NM to HI resulted in a cost
increase to $7.2M or a 9.57% increase from the baseline cost. A decrease in the required
requirements volatility parameter value from NM to LO resulted in a cost decrease to
$6.2M or a 4.53% decrease from the baseline cost. Figure 32 shows the variations in the

requirements volatility parameter values compared to the support cost for CSCI 2.

Requirements Volatility Compared to Total Cost for
CsCl 2

7.50

s 7.00
“» 6.50

0 0.5 1 1.5 2 2.5 3 3.5

y =046x +5.71671=L0O 2=NM 3=HI
R?=0.9612 Requirements Volatility
LO NM HI
$6.23M $6.53M $7.15M

Figure 32. Requirements Volatility Compared to Support Cost CSCI 2.

The environment parameter that was identified to have the greatest impact on the
support effort/cost in decreasing the parameter value for CSCI 2 was the analyst
capability parameter. A decrease in the analyst capability parameter value from NM to
LO resulted in a cost increase to $7.2M or a 9.57% increase from the baseline cost. An

increase in the required analyst capability parameter value from NM to HI resulted in a

86

cost decrease to $6.1M or a 7.05% decrease from the baseline cost. Figure 33 shows the

variations in the analyst capability values compared to the support cost for CSCI 2.

Analyst Capability Year 1 CSCI 2

$7.50
= 37.00 \
= $6.50
£ $6.00
$5.50 ‘ : . : . .
0 0.5 1 1.5 2 25 3 35
1=L0 2=NM 3=Hl
y = -0.5426x + 7.6693
R? = 0.9924 Analyst Capability
LO NM HI

$7.15 $6.53 $6.07

Figure 33. Analyst Capability Compared to Support Cost CSCI 2.

The second largest percentage change for a decrease in the environment
parameter that was identified to have an impact on the support effort/cost in decreasing
the parameter value for CSCI 2 was the programmer capability parameter. The
programmer capability parameter is a measure of the effectiveness of the software
development team. A decrease in the programmer capability parameter value from HI to
NM resulteci in a cost increase to $7.1M or an 8.20% increase from the baseline cost. An
increase in the required programmer capability parameter value from HI to VH resulted
in a cost decrease to $5.9M or a 9.37% decrease from the baseline cost. Figure 34 shows
the variations in the programmer capability values compared to the support cost for

CSCI 2.

87

Programmer Capability Compared to Support Cost for

Year 1
7.50
7.00
E 6.50 \
6.00
5.50 .

o 05 1 15 2 25 3 35
y=-057x+76433 programmer Capability
R? = 0.9984

NM HI VH
$7.06M 6.53M 5.92M

Figure 34. Programmer Capability Compared to Support Cost CSCI 2.

In summary for CSCI 2, when the parameters were changed by a one-unit
decrease, seven out of the nineteen adjustable parameters decreased the support cost, with
eight attributes increasing the support cost and three parameters not affecting the support
cost. When the parameters were changed by a one-unit increase, six out of the eighteen
parameters decreased the support cost, while eleven attributes increased the support cost,

and one parameter did not affect the cost.

The second input area analyzed was the maintenance section. The first two
parameters in the maintenance area did not influence the support cost: software
understanding and software assimilation. Thus, leading the researchers to believe that the
parameters were not functioning properly in the model. The third parameter, number of
years for the support effort, appeared to be functioning but the estimate values were the

same for each year irrespective of the number of years of maintenance. Thus, the first

88

five years of maintenance for a ten-year maintenance period were equal to a five-year
maintenance period.

The fourth parameter analyzed was annual change traffic. Annual Change Traffic
(ACT) represents the amount source instructions that will be changed on a yearly being
comprised of both modifications and additions to the original software. The annual
change traffic parameter was changed from 10 to 5, which resulted in a 50% decrease in
the first year of support costs used as a baseline. When the value was increased from 10
to 15 a 50% increase in the first year of support cost was identified. The ACT parameter
was then increased to 15, 25, and 50. The results were a 100%, 150%, and 400%
increase in the first year support costs respectively. Figure 35 shows the variations in the
ACT values compared to the support cost for CSCI 2. Table 18 the parameter changes

vand the effects on CSCI 2.

ACT Compared to Support Cost for
Year 1

$40.00

= $20.00 _MA—
5000 o=

0O 10 20 30 40 50 60
y = 0.6529x - 8E-08

) ACT
R°=1
ACT 5 10 15 20 25 50
First Year
Cost $3.26M $6.53M| $9.79M| $13,06M| $16,32M| $32.65M
% Change -50.00% 0.00%| 50.00%| 100.00%| 150.00%| 400.00%

Figure 35. Annual Change Traffic Compared to Support Cost CSCI 2.

89

Table 18. SoftEst Parameter Changes and Effects on Support Costs CSCI 2

CSCI 2 Parameters | Year 1 Support Cost $6,529,209
Parameter Parameter
Change New Change New
Parameter Dec. Cost |Change|Inc. Cost |Change
1|Analyst Capability NM -LO ($7,154,070] 9.57% | NM -HI [$6,068,784! -7.05%
Programmer
2|Capability HI-NM ($7,064,586| 8.20% | HI-VH [$5,917,348|-9.37%
Application
3|Experience NM -LO ($6,956,746| 6.55% | NM - HI |$6,233,222| -4.53%
Virtual Machine
4/Experience NM -LO [$6,858,084| 5.04% | NM -HI ($6,200,334/ -5.04%
5|Language Experience| HI-NM [$6,702,300| 2.65% | HI-VH [$6,529,209| 0.00%
Processing Time
6|Constraints NM -LO {$6,529,209| 0.00% | NM -HI [$6,890,972| 5.54%
Hardware Storage
7|Constraints NM -LO [$6,529,209(0.00% | NM - HI [$6,726,533| 3.02%
Virtual Machine
8| Volatility NM -LO |$6,101,672| -6.55% | NM -HI [$7,022,521| 7.56%
Development Turn
9]Around Time NM -LO ($6,101,672| -6.55% | NM - HI |$6,759,422| 3.53%
Requirements
10| Volatility NM -LO ($6,233,222| -4.53% | NM -HI {$7,154,070| 9.57%
11{Required Reliability | HI -NM [$6,100,242| -6.57% | HI-NM [$7,244,154{10.95%
12|Data Base Size NM -LO {$6,331,884 -3.02% | NM - HI [$6,792,309| 4.03%
13|Product Complexity | NM -LO ($6,035,898| -7.56% | NM - HI [$7,022,521| 7.56%
14|Design For Reuse NM -LO [$6,529,209| 0.00% { NM-HI |$6,858,084| 5.04%
Modern
Development
15|Practices NM -LO ($6,858,084| 5.04% | NM -HI |$6,233,222| -4.53%
Use Of Automated
16|Tools NM -LO [$6,858,084| 5.04% | NM—HI [$6,233,222| -4.53%
Classified UNCL -
17|Environment UNCL - CL|{$6,858,084| 5.04% CL $6,858,084] 5.04%
NM unable NM unable
18|Schedule Constraints | to change - - to change - -
MAN AIR MAN AIR
— UNMAN - UNMAN
19|Platform Risk AIR $6,163,793| -5.60% | SPACE [$6,894,625| 5.60%

90

Figure 36 represents the support costs over the twenty years that the support effort
will continue. The first three years of support costs allow for a transition period for the
software. This allows for residual errors to be found before a consistent steady state is
reached with the software support efforts. The maintenance transition factors used for
calculating the delta in the support cost effort for the first three years are 1.5 for the first

year, 1.3 for the second year, and 1.15 for the third year.

SoftEst 20 Years of Support Costs

$7,000,000

$6,000,000 }-&

$5,000,000 | N

$4,000,000

$3,000,000

$2,000,000

$1,000,000
$0

0 5 10 15 20 25
Year

YEAR 1 YEAR2 YEAR3 YEAR4-20
$65M $5.7M $5.0M $4.4M

Figure 36. SoftEst 20 Year of Support Costs

91

KnowledgePLAN 2.0

KnowledgePLAN 2.0 gave an estimate of $20.8M for a 5-year support period
with the given base case inputs. The period analyzed in KnowledgePLAN 2.0 was 15
years shorter than the other models due to the 5-year template that the model uses to
estimate the support effort/costs. (Software Productivity Research (SPR) is currently in
the process of updating KnowledgePLAN 2.0 to handle a 20-year support period through
a 20-year template.) The model does separately consider the cost of documentation,
however, it is considered in the maintenance documentation reviews of the maintenance
manuals. Maintenance management is broken out on a single line item under central |
maintenance. Maintenance management in KnowledgePLAN 2.0 refers to the normal
supervisory tasks associated with managing technical staff, including hiring, appraising,
handling budgets, expense tracking, and other associated activities. KnowledgePLAN
2.0 does not directly use SLOC to estimate the support effort/cost, but rather converts the
SLOC input into International Function Point Users Group (IFPUG) Function Points.
The attribute options in the model are one of the primary sources of adjustments to the
estimates calculated by SPR KnowledgePLAN 2.0. The values ranged from 1 (good) to 5
(bad) with a value of 3 being average or nominal. Thus, a response of 3.0 is by
convention assumed to have little or no impact on the knowledge base generated
estimate. If no value is provided for an attribute, then the edit field shows N/A and the
attribute is treated as though it had a value of 3.0. The manner in which the maintenance
attributes are defined can have a significant effect on the project quality and productivity
as well as time and cost. The maintenance attributes enables the user to characterize the

maintenance side of the project. These attributes have a large influence on defect repair

92

and user support in the maintenance stage of the software.

The first maintenance category addressed in the Knowledge Plan 2.0 model was
personnel. The attributes for maintenance personnel affect the performance of defect
repair and user support in the post production phases of the software development cycle.
Experience of personnel is as critical to quality and productivity in maintenance as it is in
development effort of the software. The first attribute parameter analyzed within the
personnel category was maintenance personnel staffing. The responsibility of bug fixing
can vary from project to project. It can be done by a dedicated staff or it can be
performed informally by developers. This can have a significant impact on productivity
and quality. The range of parameter descriptions/values is from all maintenance being
performed by full time professional maintenance personnel (1) to all maintenance being
performed by development personnel (5). Figure 37 shows the variations in the staffing

values compared to the support costs.

Maintenance Personnel-Staffing Variations Compared to
Total Cost

21.0
20.9 o

= 208 _~
® 207 ad

20.6 , ~ . .
0 1 2 3 4 5
y= 0.12409x +20.363 Personnel Staffing
R“=0.9992

Decrease Change Baseline Increase Change

$20,646,824 -0.65% $20,780,864 $20,928,688 0.71%

Figure 37. Maintenance Personnel Staffing Compared to Total Costs.

93

The second attﬁbute analyzed within the personnel category was maintenance
personnel experience. Maintenance personﬁel experience is the amount of experience
that an individual has in system that is to be maintained. The experience of maintenance
staff in relation to product maintenance can greatly enhance or impair maintenance

. productivity. The experience parameter was found to flave an effect on the support
effort/costs by increasing or decreasing the attribute’s value. The range of the attribute’s
descriptions/values is from all personnel being experts in the system to be maintained (1)
to all personnel being new to the system being maintained (5). An increase in the
experience value from 3.0 to 4.0 resulted in a cost increase to $22.4M or a 7.6% increase
from the baseline cost. A decrease in the experience value from 3.0 to 2.0 resulted in a
cost decrease to $19.5M or a 6.19% decrease from the baseline cost. Figure 38 shows the

variations in the experience values compared to the support costs.

Maintenance Support- Experience Variations Compared
to Total Costs

= 210 |
® 200 ad

19.0 , ~— .
0 1 2 3 4 5
Personnel Experience ’
Decrease Change Baseline Increase Change
$19,493,824 -6.19% $20,780,864 $22,360,608 7.60%

Figure 38. Personnel Experience Compared to Total Cost

94

The third attribute analyzed within the personnel category was maintenance
personnel education. Maintenance personnel education is the amount of education that
an individual has in system that is to be maintained. Training given to the maintenance
personnel, prior to the start of maintenance, can affect maintenance productivity. On the
job training should not be considered applicable in this context. The experience
parameter was found to have an affect on the support effort/costs by increasing or
decreasing the attribute’s value. The range of the attribute’s descriptions/values is from
maintenance training is not required for the project (1) to little or no training in projects
or tools (5). An increase in the education attribute value from 3.0 to 4.0 resulted in a cost
increase to $21.6M or a 3.72% increase from the baseline cost. A decrease in the
experience attribute value from 3.0 to 2.0 resulted in a cost decrease to $20.IM or a
3.36% decrease from the baseline cost. Figure 38 shows the variations in the experience

values compared to the support costs.

Maintenance Personnel- Education Variations
Compared to Total Cost

220

215

210

i 20.5
200 el

19.5
18.0

Total Cost

1 15 2 25 3 35 4 45

y=0.7358x + 18.599 Maintenance Personnel
R%=0.9991 - Education
Decrease Change Baseline Increase Change

$20,082,888 -3.36% $20,780,864 $21,554,512 3.72%

Figure 39. Personnel Education Compared to Total Cost.

95

The second maintenance category addressed was technology. The attributes for
maintenance technologsf affect the performance of defect repair and user support in the
post production phases of the software development cycle. The attribute that was
identified to have the greatest impact on the support effort/cost was replacement and
restructure planning. The range of parameter descriptions/values for replacement and
restructure planning is from having automated restructuring service from an outside
vendor (1) to no formal replacement or restructure strategy (5). An increase in the
replacement and restructure planning attribute value from 3.0 to 4.0 resulted in a cost
increase to $21.2M or a 2.09% increase from the baseline cost. A decrease in the
experience attribute value from 3.0 to 2.0 resulted in a cost decrease to $19.8Mora
4.90% decrease from the baseline cost. Figure 40 shows the variations in the replacement

and restructure planning values compared to the total support cost.

Replacement and Restructing Planning
Variations Compared to Total Costs
22.0
= 21.0
“ 200
19.0 . . . ‘
0 1 2 3 4 5
y-= 0.72269x + 18.406 Replacement and
R“ = 0.9491 Restructing Planning
Decrease Change Baseline Increase Change
$19,762,200 -490% $20,780,864 $21,216,080 2.09%

Figure 40. Technology Replacement and Restructuring Planning.

96

The third maintenance category addressed was process. The attributes for
maintenaﬁce process category affect the performance of defect repair and user support in
the post production phases of the software development cycle. The two attributes that
were identified to have the greatest impact on the support effort/cost were field
maintenance and customer support. Field maintenance concerns the dispatch of
maintenance personnel to user or customer locations to assist in defect repairs and
problem identification. The range of parameter descriptions/values for field maintenance
is from permanent on-site field maintenance personnel (1) to no field maintenance for the
project (5). An increase in the field maintenance attribute value from 3.0 to 4.0 resulted
in a cost decrease to $14.8M or a 29.0% decrease from the baseline cost. A decrease in
the experience attribute value from 3.0 to 2.0 resulted in a cost increase to $38.2M or an
84.0% increase from the baseline cost. Figure 41 shows the variations in the field

maintenance values compared to the total support cost.

Field Maintenance Variations Compared to Total
Cost
60.0
40.0
-
20.0 x————
0.0 ‘ . . .
0 1 2 3 4 5
y =-11.742x + 59.816 Field Maintenance
R? = 0.9268
Decrease Change Baseline Increase Change
$38,237,648 84.0% $20,780,864% $14,754,592 -29.00%

Figure 41. Field Maintenance Compared to Total Cost.

97

The second maintenance process attribute addressed was customer support.
Customer support describes the post installation assistance provided to users. The range
of parameter descriptions/values varies from full telephone hot lines with adequate
support (1) to limited or no customer support (5). An increase in the customer support
attribute value from 3.0 to 4.0 resulted in a cost decrease to $19.5M or a 5.92% decrease
from the baseline cost. A decrease in the customer support attribute value from 3.0 to 2.0
resulted in a cost increase to $23.5M or a 13.13% increase from the baseline cost. Figure

42 shows the variations in the customer support values compared to the total support cost.

Customer Support Variations Compared to Total
Cost
30.0
s 20.0 ‘%‘Q———
¢ 100 '
0.0 : . } .
0 1 2 3 4 5
y=-1 .2794x +27.218 Customer Support
R® =0.9545
Decrease Change Baseline Increase Change
$23,508,496 13.13% $20,780,8648 $19,549,270 -5.92%

Figure 42. Customer Support Compared to Total Cost.

98

The fourth maintenance category addressed was environment. Maintenance
environment attributes capture the production characteristics for the software product.
System quality, performance considerations, and the number of installation sites
influence the support effort. Installation and production geography deals with the
number of sites where the software will be physically installed on computers. The
installation and production geography attribute was identified to have the greatest impact
on the support effort/cost in the environment category. The range of parameter
descriptions/values for installation and production geography is from a single production
site, in a single city (1) to installation and production not being defined (5). An increase
in the installation and production geography attribute value from 3.0 to 4.0 resulted ina
cost increase to $22.1M or a 6.27% increase from the baseline cost. A decrease in the
experience attribute value from 3.0 to 2.0 resulted in a cost decrease to $19.7M or a
5.12% decrease from the baseline cost. Figure 43 sho_ws the variations in the installation

and production geography values compared to the total support cost.

Installation and Production Geography Variations
Compared to Total Cost

230
22.0
= 210
20.0 h ,
19.0

1.5 2 25 3 35 4 45
y=1.1829x + 17.311 Installation and Production Geo.
R? = 0.9966

Decrease Change Baseline Increase Change
$19,717,016 -5.12% $20,780,8645 $22,082,872 6.27%

Figure 43. Installation and Production Geography Compared to Total Cost.

99

The fifth maintenance category addressed was product. The attributes for the
maintenance product category capture the production characteristics for the software
product. Long range product stability is the volatility of the software over time and the
frequency with which new functions, data types, or hardware platforms may be needed,
thus affecting the long-range maintenance costs. The range of parameter
descriptions/values for long range product stability is from few or no changes to code,
data, or to new har_dware (1) to frequent changes in functions, data types, and hardware
(5). An increase in the long-range product stability attribute value from 3.0 to 4.0
resulted in a cost increase to $21.7M or a 4.06% increase from the baseline cost. A
decrease in the experience attribute value from 3.0 to 2.0 resulted in a cost decrease to
$20.0M or a -3.68% decrease from the baseline cost. Figure 44 shows the variations in
the long-range product stability values compared to the total support cost. Table 19

shows the variations in the maintenance attribute values compared to the support costs.

Long Range Stability Variations Compared to Total Cost

22.0
21.5 2
21.0 /
“E’ 20.5 /

20.0 - /

v

19.5

0 1 2 3 4 5
y = 0.8041x + 18.395
Long Range Product Stability

R? = 0.9992

Decrease Change Baseline Increase Change
$20,016,736 -3.68% $20,780,8648% $21,625,000 4.06%

Figure 44. Long Range Product Stability Compared to Total Cost.

100

Table 19. Maintenance Attribute Variations Compared to Total Cost

KnowledgePLAN 2.0 Build 2026

Software Productivity Research (SPR)

Baseline Support Cost $ 20,780,864
Personnel Chg Decrease
Maintenance Personnel
STAFFING 3-2 20,646,824
Maintenance Personnel
EXPERIENCE 3-2 19,493,824
Maintenance Personnel
EDUCATION 3-2 20,082,888
Technology
Maintenance Platform
Computing Support 3-2 20,673,840
Release Control Methods 3-2 20,780,864
Problem tracking and
Reporting 3-2 20,675,384
Replacement and
Restructure Planning 3-2 19,762,200
Process
Central Maintenance 3-2 20,620,184
Field Maintenance 3-2 38,237,648
Software Warranty Coverage 3-2 20,780,864
Customer Support 3 -2 23,508,496
Delivery Support 3-2 20,780,864
Environment
Installation and Production
Geography 3-2 19,717,016
Number of System

Installation sites

Annual Growth in Installation
Sites (percent)

Number of System

3-2 20,780,864

3-2 20,780,864

Maintenance Sites 3-2 20,780,864
Product

Program Execution

Frequency 3-2 20,780,864
Current System Status 3-2 20,780,864
Long Range Product Stability 3~2 20,016,736

Change

-0.65%
-6.19%

-3.36%

-0.52%
0.00%

-0.51%

-4.90%

-0.77%
84.00%
0.00%
13.13%
0.00%

-5.12%
0.00%
0.00%
0.00%

0.00%
0.00%
-3.68%

Baseline
20,780,864
20,780,864

20,780,864

20,780,864
20,780,864

20,780,864
20,780,864

20,780,864
20,780,864
20,780,864
20,780,864
20,780,864

20,780,564
20,780,864
20,780,864
20,780,864

20,780,864
20,780,864

w W w
B

Increase Change

20,928,688
22,360,608

21,554,512

20,893,168
20,780,864

20,890,184

21,216,080

20,964,136
14,754,592
20,780,864
19,549,720
20,780,864

22,082,872
20,780,864
20,780,864

20,780,864

20,780,864
20,780,864
21,625,000

0.71%
7.60%

3.72%

0.54%
0.00%

0.53%

2.09%

0.88%

-29.00%

0.00%
-5.92%
0.00%

6.27%
0.00%
0.00%

0.00%

0.00%
0.00%
4.06%

101

20,780,864

Other non-maintenance attributes were found to have an affect on the Knowledge
PLAN2.0 model estimate. One non-maintenance attribute was the type of language that
the software will be developed in and consequently supported with in the deployment
phase. When the type of software was changed from Ada95 to C++, a new total support
cost of $19.7M was estimated by the model, which was a decrease of 5.04% from the
baseline cost. One note of caution here is that the size of the software will also have to be
re-evaluated due to the inherent change/adjustment in the number of lines of code or
function points that will be required to develop the software in the new language.

Another attribute category found that affects the support costs is the base code
attributes. The first attribute analyzed under this category was base code origin. The
base code origin considers where the base code was developed. This attribute takes into
consideration that the ability to enhance and maintain a software product. It is considered
more difficult if the software was developed by different personnel, with a different
methodology, and with different documentation standards than the current organization.
An increase in the base origin attribute value from 3.0 to 4.0 resulted in a cost increase to
$21.2M or a 2.01% increase from the baseline cost. A decrease in the experience
attribute value from 3.0 to 2.0 resulted in a cost decrease to $20.4M or a -2.00% decrease
from the baseline cost. Table 20 shows the variations in the base code attributes and their
corresponding percentage changes.

The second attribute analyzed under this category was base code origin age. The
base code origin age considers when the base code was developed. This attribute takes
the time period of when the code was developed. Each time period of software

development can be characterized by the relative structure design and coding practices,

102

automated aids used for design, code generation and testing and the availability of skilled
personnel. An increase in the base origin age attribute value from 1.0 to 2.0 resulted ina
cost increase to $21.1M or a 1.16% increase from the baseline cost. A decrease in the
experience attribute value was unable to be performed. Table 20 shows the variations in
the base code attributes and their corresponding percentage changes.

The third attribute analyzed under the base code category was base code
maintenance responsibility. The base code maintenance responsibility attribute considers
who is responsible for the maintenance of the base code that was developed. A formal
group external to the organization is more likely to be better focused on the job of
maintaining the base code than an internal organization that has other responsibilities.

An increase in the base origin maintenance responsibility attribute value from 3.0 to 4.0
resulted in the same cost or no change from the baseline. A decrease in the experience
attribute value from 3.0 to 2.0 resulted in a cost decrease to $18.7M or a 9.87% decrease
from the baseline cost. Table 20 shows the variations in the base code attributes and their
corresponding percentage changes.

The fourth attribute analyzed under this category was base code status. The base
code status considers the stabilization of the system. This attribute takes into
consideration the overall stability and ease to which modifications to the code can be
made. Modification to poorly structured code is unproductive and a difficult task in the
software engineering. An increase in the base code status attribute value from 3.0 to 4.0
resulted in a cost increase to $21.7M or a 4.32% increase from the baseline cost. A

decrease in the experience attribute value from 3.0 to 2.0 resulted in a cost decrease to

103

$20.0M or a -3.98% decrease from the baseline cost. Table 20 shows the variations in

the base code attributes and their corresponding percentage changes.

Table 20. Base Code Attribute Variations Compared to Total Cost

Base Code Decrease/New Change Baseline Increase/New Change in
Attributes Total Cost in Cost Total Cost Total Cost Cost
Base Code Origin 20,365,400 -2.00% 20,780,864 21,217,432 2.10%

Base Code Age Unable to Dec. 0.00% 20,780,864 21,114,016 1.60%

Maintenance
Responsibility 18,729,232 -9.87% 20,780,864 20,780,864 0.00%

Stabilizing System 19,954,312 -3.98% 20,780,864 21,677,984 4.32%

In summary, the maintenance support category attributes varied the support
effort/costs estimates from no change in the estimate to an 84% change. Thus, care
should be exercised when the maintenance category attribute values are decided upon,
due to the significant changes in the estimate values. There were also non-maintenance
attributes that affected the estimated effort/cost. These attributes ranged from the type of
language that the software was to be developed in to the base code characteristics. The
complexity category located in the sizing summary is subdivided into base code, new
code, and update code tabs with further refinement into problem, code, and data for each
code type. After making numerous adjustments in their values they were found not to
have an effect on the support estimate.

KnowledgePLAN’s definition of maintenance is that maintenance is comprised of
the activities performed to support or manage a software environment. The following
task categories can be found under the maintenance estimate: customer support, field
service, central maintenance, maintenance management, and system deployment.

Customer support refers to a number of different tasks that include answering
telephone inquiries, providing training for new users, and relaying user defect reports to

the central maintenance facility.

104

Field service refers to on-site assistance given to customers at their own locations.
Field service is normally associated with large commercial software packages.
Maintenance management refers to the normal supervisory tasks associated with
managing technical staff, performing supervisor duties, handling budgets, expense
tracking, and other management related activities.

Central maintenance is a maintenance category where the defect rework is
accounted for in the estimate. Central maintenance is sub-divided into maintenance
defect rework preparation, maintenance defect rework execution, and maintenance defect
rework repair. Maintenance defect rework preparation is the task category related to
administration of the software maintenance environment. This includes tool acquisition
and education for the maintenance engineers on the system. Maintenance defect rework
execution includes the analysis and prioritization of defect reports in a software
maintenance environment, where the individuals reporting defects may be customers or
internal personnel working on software enhancements. Maintenance defect rework repair
consists of the effort needed to fix defects found in a legacy system or released software
product. Other work that is included in this category of central maintenance is the effort
needed to debug and test the fixes made to the software.

System deployment is the configuration of a software application for use ina
specific user’s environment. The activities associated with system deployment include
setting flags, options, and other non-programming adjustments to an application.

The support costs for the 5-year period were graphed against each year to give a
representation of how the cost were estimated over the time period. Figure 45 shows the

results of the graph with the corresponding values for each year.

105

Five Year Cost Comparison
$6.00
$5.00 —_\
$4.00
= $3.00 e
“ $2.00 _
$1.00
$0.00 . . ’ . -
0 1 2 3 4 5 6
y=-0.6237x + 6.0273 Year
R?=0.9999
Year 1 2 3 4 5
Cost $5,404,328 $4,769,520 $4,168,120 $3,536,848 $2,902,048

Figure 45. Five Year Cost Comparison.

Table 21 provides the cost category breakout for the five year support period and

table 22 shows the SPR KnowledgePLAN database composition.

Table 21. Estimate Overview by Category.

Defect
Removal

Deliverable Efficiency

Cost Category Breakout for the § Year Support Period
Task Plan Plan Plan Plan
Category Start Finish FTE Work Cost
System
Deploy 6/25/98 7/8/98 3.00 01.58M $23,960* 3555.00fp
MaintDef
RepPrep 7/8/98 7/10/03 049 33.71M $512,344 175.00 ki
MaintDef
RepExec 7/8/98 7/10/03 0.94 64.60M $981,992 175.00 ki
MaintDef
RepRepair 7/8/98 7/10/03 276 190.06 M $2,888,856 1023.00 df
Field
Service 7/8/98 7/10/03 11.13 765.30 M $11,632,544 3557.00fp
Customer
Support 7/8/98 7/10/03 0.96 66.11M $1,004,800 3557.00fp
Maint
Mgmt 7/8/98 7/10/03 3.60 247.39M $3,760,328 123.00 pe
5-Year Total $20,780,864
* Note that deployment costs are not included in the 5 year total estimate

0%

0%
11%
0%
0%
0%

0%

106

Table 22. SPR KnowledgePLAN Database Composition.

\

\

\

|

|

|

i Size of Project in MISand Sys.and Military and Commercial Other Total Percent
| function Points Outsource Embed. Defense

| _

' Very Small 20 130 25 15 35 295 4%
| <10

! Small 450 275 35 80 150 990 12%
1 11-100

|

i Low Medium 775 600 65 130 300 1,870 22%
| 101-250

| Medium 1050 925 30 125 400 2,530 30%
. 251-1000

\

‘ Large 450 700 75 175 300 1,700 20%
| 1001-5000

|

' Very Large 250 350 60 50 150 860 10%
| 5001-20000

| .

| , Super Large 70 85 15 15 10 195 2%
\ >20000

| Total 3,135 3,065 305 590 1,345 8,440 100%
|

| Percent 37% 36% 4% 7% 16% 100%

The main types of projects in the database were MIS, Outsource, Systems, and

Embedded type projects. The size of the systems was from ten lines of code to greater
. than 20,000 lines of code. The majority fell in the low-medium, medium, and large size
ranges.

The 20-years of support costs that were looked at for the five models showed
varying methods of how the costs were estimated and allocated the 20-years throughout
the support effort. The PRICE-S had made changes in the support cost for every year of
the twenty-year estimate (21-years to account for the partial first and twentieth year in
order to get a whole year’s worth of support effort). The SEER-SEM and SoftEst models

made changes in the yearly values for the first four years and then flat lined thereafter to

107

year twenty. SEER-SEM also had 21-years in the estimate in order to account for the

partial years to make a full twenty years. The SoftCost-OO made changes in the yearly

values for the first three years and then flat lined to year twenty. KnowledgePLAN 2.0

had made changes in the support costs for every year of the five-year estimate. Table 23

provides a 20 year support cost comparison for the given models, with the exception of

SPR KnowledgePLAN, which only estimates a five year support period. Figure 46

provides a graphical representation of the 20 year support cost comparison of the models.

Table 23. 20-Year Support Costs - a Comparison of the Models.

Knowledge-

Year SEER-SEM Softcost-OO PRICE-S SoftEst PLAN

1 $9,944,596 $3,402,100 $2,041,360 $6,529,209 $5,404,328
2 $12,034,101 $3,118,600 $3,009,600 $5,658,648 $4,769,520
3 $6,371,501 $2,835,000 $3,078,000 $5,005,726 $4,168,120
4 $4,289,502 $2,835,000 $3,082,560 $4,352,806 $3,536,848
5 $4,289,502 $2,835,000 $3,053,680 $4,352,806 $2,902,048
6 $4,289,502 $2,835,000 $2,971,600 $4,352,806

7 $4,289,502 $2,835,000 $2,830,240 $4,352,806

8 $4,289,502 $2,835,000 $2,632,640 $4,352,806

9 $4,289,502 $2,835,000 $2,390,960 $4,352,806

10 $4,289,502 $2,835,000 $2,120,400 $4,352,806

11 $4,289,502 $2,835,000 $1,831,600 $4,352,806

12 $4,289,502 $2,835,000 $1,536,720 $4,352,806

13 $4,289,502 $2,835,000 $1,254,000 $4,352,806

14 $4,289,502 $2,835,000 $984,960 $4,352,806

15 $4,289,502 $2,835,000 $743,280 $4,352,806

16 $4,289,502 $2,835,000 $535,040 $4,352,806

17 $4,289,502 $2,835,000 $363,280 $4,352,806

18 $4,289,502 $2,835,000 $237,120 $4,352,806

19 $4,289,502 $2,835,000 $148,960 $4,352,806

20 $4,289,502 $2,835,000 $95,760 $4,352,806

21 $1,537,067 $6,080
Total $101,271,732 $57,550,700 $34,941,760 $91,191,285 $20,780,864

Note: Years 1 and 21 are only partial years for SEER-SEM and PRICE-S due to support
effort start dates.

108

20-Year Support Costs - a Comparison of the Models

14,000,000

12,000,000 /A\

10,000,000 & \
® 8,000,000
2 A
8 6,000,000 X\

4,000,000 il

2,000,000 ’

0 . ‘ . LS
1995 2000 2005 2010 2015 2020
Year
|+SEER-SEM i SOMCOSt-00 wmeym PRICE=S —3¢==SOMtESt === Plan 2.0]

Figure 46. 20-Year Support Costs - a Comparison of the Models.

The software support estimating models were then compared to one another in
terms of the total estimate for the 20-year support period. The model with the highest
estimate was SEER-SEM at $101.3M, which was 290% greater than the estimate
generated by PRICE-S and only 111% greater than the SoftEst. The second highest
estimate was SoftEst at $91.2M, which was 261% greater than PRICE-S and 158%
greater than SoftCost-O0. The third highest estimate was SoftCost-OO at $57.6M,
which was 165% higher than PRICE-S and 158% higher than SoftEst. PRICE-S at
$34.9M, was the lowest estimate. SPR KnowledgePLAN only included a template for a
5 year support period. Table 24 provides a summary of the comparison of the models.
This comparison of the models was only tested for the given base case in this research
effort and should not be applied in the field of software cost estimating without further

study and analysis.

109

Table 24. Model Estimates Compared to Other Models in Percentage Terms

Model Comparison for 20 Years of Support

Estimate M 34.9 101.3 57.6 91.2 N/A
SPR Knowledge
PRICE-S | SEER-SEM | SoftCost-O0 | SoftEst PLAN
PRICE-S 34.9 | 100.00% 290.26% 165.04% | 261.32% N/A
SEER-SEM [101.3| 34.45% 100.00% 56.86% 90.03% N/A
SoftCost-O0 | 57.6 | 60.59% 175.87% 100.00% | 158.33% N/A
SoftEst 91.2 | 38.27% 111.07% 63.16% 100.00% N/A
SPR Knowledge
Plan N/A N/A N/A N/A N/A N/A

110

V. Conclusions and Recommendations

Overview

The purpose of this research effort was to develop a consolidated document which
highlights the differences in definitions, assumptions, methodologies, and theory used by
PRICE-S, SEER-SEM, SoftCost-O0, SoftEst, and SPR KnowledgePLAN cost models
and to examine what the impact of these differences have on the resulting support
estimates. Conclusions regarding this effort are constrained by the research objectives
outlined in Chapter I and in Appendix B. Although numerous differences between the
models were identified, this research does not cover all software support issues and
therefore should not be used as a comprehensive source. For the other issues that were
not addressed in this effort, the researchers make several recommendations for further
research in the software support arena.

Conclusion

Five main research objectives guided this research effort. The conclusions will be
addressed in context of these objectives.

Research Objective 1. What general support activities and specific cost elements
are estimatgd? The common theme among the models was maintenance, enhancement,
and growth in the estimation of the support costs. All of the models touched upon one or
more of the categories. However, not all models reported all the costs at the sub-category
level. The models also used different names for the various sub-categories of support and
had have different input parameters required for the support and development efforts.
Each model used different algorithms or a combination of algorithms for estimating

software support effort/cost. The specific cost elements for software support are model

111

dependent. The cost for documentation was considered for all the models either directly
or indirectly within another cost category. The support cost for program management
was once again directly or indirectly identified by all the models with the exception to
SoftEst, which only considered error corrections/bug fixes and small enhancements to the
software.

Research Objective 2. How does each model define a source line of code and
how are language differences accounted for? The models used a fairly consistent
definition for the source lines of code used or the given number of function points to be
used in place of lines of code. All of the models allowed SLOC to be entered into the
model for generating the estimate, whether SLOC was directly used or converted into
Function Points through a conversion equation. Note that input parameters within the
development or support environment were found to have made an adjustment to the
number of lines of code that the model actually uses to perform the given estimate. Thus,
changes to the initial SLOC input by the user occurred within the model. The models
accounted for the differences in the programming languages by adjusting the model’s
estimate according to the change in language made. For example, a change in the
language parameter for the PRICE-S model in CSCI 2 (C++ to Ada95) resulted in a 17%
increase in the support effort estimate. A change in the language parameter in the SoftEst
model resulted in a change in the coefficients and exponents in the estimation equations,
which resulted in a change of the estimate.

Research Objective 3. Which model factors are the key cost drivers for support
cost? What estimating methodology was used to develop support factors?

Unfortunately, these questions cannot be answered in a general nature. The models had

112

numerous support factors that varied the support cost estimate. There was no single cost
driver or methodology that was used by any of the models in the estimation of the effort
or cost. In some models, a single change in a development input parameter would result
in a dramatic change in the support estimate. The range of percentage changes between
the models was seen from a high of 84% to a low of a .04%. Other models had very
limited changes in support when adjusting the development inputs. Some of the unique
support factors identified by the model designers had no effect on the resulting support
estimate. Once again, the models varied in regards to which parameters caused a change
that a consolidated conclusion couid not be reached.

Research Objective 4. How do the models account for variations in the number
of years a system is deployed? All the models researched allowed for different periods of
support. SPR KnowledgePLAN, however, was limited to a five-year template and
therefore, a five-year support estimate. All models showed basically the same trend,
higher support cost in the initial years and then a leveling off or a continual small
decrease later in the life cycle, with the exception of PRICE-S, which continually
declines. The models all used different algorithms depending on the number of years
input.

Research Objective 5. Are there any distinctive characteristics about the data
base(s) used by the various models? The databases used by the various models were also
extremely varied. Some had large amounts of military avionics with little MIS, while
others were just the opposite. The number of languages used in the databases was also
largely varied. This information was dependent on the amount of information that the

developer had on a given company depending on the model developer.

113

The researchers feel a typical user would not be able to normalize the various
software support models or generalize the types of inputs required. This is due to the
inherent definitions and the amount of importance placed upon the input parameters in
the cost estimation methodology of the various models. Users should concentrate on
learning two of the models very well, which will allow for running cross checks. The
appropriate model to use is dependent on the project or system being estimated since the
databases are varied between the software support models.

Recommendations

This research effort did not touch upon all aspects of the software support cost
estimating process. The researchers did find numerous issues that could be addressed in
future research efforts. The first area is that additional research should be performed in
attempting to calibrate the support cost estimating models to military software databases
and then perform a verification and validation of the models to the various projects.

The second area of additioﬁal research would be to determine the accuracy of
information that is located in the databases for the various models. This would include
determining the level of cost information (program, project, CSCI, or CSC level) in the
database. This area of concern maybe addressed by both the commercial and government -
sectors.

The third area would be to determine a (best practices) set of attributes or
parameters that could be used to represent the support effort that would in turn capture
the costs associated with performing the support to aid in the development of an accurate

estimate of the support costs. An activity based cost estimation of the support effort may

114

be beneficial or a survey of the maintenance functions being performed and the
percentage of effort spent o.n each category.

The fourth area of additional research would be to develop a set of generic
parameters or attributes that could be translated into the definitions of the attributes for
the various models, so that the inputs could be generalized for the models.

In conclusion, this research effort identified many key similarities and
differences between five software support cost estimating models. The
researchers' feel that the differences in definitions for model input parameters,
internal algorithms, and key assumptions about the different types of software
support activities make it nearly impossible for a model user to normalize the
different models. The researchers desire that this effort resulted in a useful,
consolidated document, which gives practical knowledge about the field of
software support, and helps model users understand why the models produce
different estimates for an identical type of software design and support

environment.

115

Appendix A: Baseline Case Used for the Models

REVIC SEER-SEM PRICE-S SoftCost-0O0 SPR KnowledgePLAN
C | Separate One Data File for One Data File One Data File for One Data File for Total
S | Data file Total Estimates for Total Total Estimate Estimate
C | foreach 2CSCs Estimate 2 CSCs 1 CSCI: 175 K SLOC
I | CSCI CSC1: 20K SLOC | 2CSCs CSC1: 20K SLOC Prog: Appl
1 | 2CSCs CSC2: 30K SLOC | CSC1:20K CSC2: 30K SLOC Standalone
loaded into | Avionics Platform | SLOC Avionics (Military) | Gov. Mil. Cont.
this file Flight Application | CSC2: 30K Centralized Sys: Embedded
CSC1: 20K | Ada Development | SLOC 1 Organization Metric Sizing:
SLOC Method PROFAC: 5.00 | High Degree of Lang: Ada 95
CSC2: 30K | 2167A min APPL: 5.50 Standardization Base Code Age: New or
SLOC Development PLTFM: 1.80 1 OO Project less than year
ADA Standard SSR Date: 894 | Completed Base Code Origin:
Embedded | Default values for | INTEGE & Nominal values for | Developed under custom
Mode all other inputs INTEGI: 0.50 all other inputs contract
RELY: HI CPLX1: 1.00 Default values for all
Default Default values other inputs
values for for all other
all other inputs
inputs
C | Separate Avionics Platform | PROFAC: 5.00 | 80K SLOC
S | Data File Flight Application | APPL: 5.50 Avionics (Military)
C | Embedded | Waterfall PLTFM: 1.80 Centralized
I | Dev Mode | Development SSR Date: 894 | 1 Organization
2 | PCAP:HI Method INTEGE & High Degree of
LEXP:HI | 2167A min INTEGI: 0.50 Standardization
RELY: HI | Development CPLX1: 0.80 1 OO Project
DT&E: Standards Non-Executable | Completed
28% Programmer SLOC: 0 Nominal values for
80K SLOC | Capability: Nom, Default values | all other inputs
Default Hi, VHI for all other
values for | Programmer Lang | inputs
all other Exp: HI, VHI, EHI
inputs Language Type:
HI, HI, VHI
80K SLOC
Default values for
all other inputs
C | Separate = | Avionics Platform | PROFAC: 5.00 | 45K SLOC
S | Data File Flight Application | APPL: 5.50 Avionics (Military)
C | ADA ADA Development | PLTFM: 1.80 Centralized
I | Developme | Method SSR Date: 894 | 1 Organization
3 | nt Mode 2167A Min INTEGE & High Degree of
RELY: HI | Development INTEGI: 0.50 Standardization
45K CLOC | Standard CPLX1: 1.00 1 OO Project
Default 45K SLOC Completed
values for | Default values for Nominal values for
all other all other inputs all other inputs
inputs

116

Appendix B: Checklist Used to Examine Cost Models

1. What general support activities and specific cost elements are estimated?
a. What general support activities are included in the model estimates?

b. What specific cost elements are estimated by the model? What do they mean or
represent?

c. Does the model include the cost of updating the documentation, is that cost
separately identified?

d. Does the model include the cost of program management, if so, is the cost
separately identified?

2. How does each model define a source line of code and how are
language differences accounted for?

a. What is each model's definition of source lines of code?
b. Do the models account for language differences?

3. Which model factors are key cost drivers for support costs? What estimating
methodology was used to develop support factors?

a. Do model development factors affect support costs. To what extent do these factors
affect the support costs.

b. Identify support unique cost drivers used by each model to develop estimates (i.e
which factors have the most significant impact on development effort?).

c. How were these support factors developed? What estimating methodology was

used? Linear regression or some other statistical method? Expert Judgment?
Heuristics? Composite?

4. How does the model account for variations in the numbers of years a system
is deployed?

a. Does the model allow for variations in the number of years to be supported?

b. What, if any, penalties are assessed when the schedule is compressed or extended?

c. What estimating methodology was used? Linear regression or some other
statistical method? Expert Judgment? Heuristics? Composite?

117

5. Are there any distinctive characteristics about the data base(s) used by the
various models?

a. How many projects were in the database used to develop the model?

b. Did it have any unique characteristics? If yes, how were these special
characteristics normalized in developing the generic model?

¢. How much of the database was military systems versus commercial systems?
Embedded systems versus MIS systems?

d. What programming languages were included in the database (% each)?

e. What was the distribution of the records in the database by size (project level,
CSCI, CSC, CSU)?

118

Appendix C: PRICE-S Reports

--- PRICE SOFTWARE MODEL ---
Acquisition Mode

DATE Tuesday June 23 1998 TIME 12:44PM Project : PRICENEW

394028
CSCI 1 Devt. Item w/comps
ITEM DESCRIPTORS
Platform 1.80 Mgmt Complexity 1.00 External Integ 0.50
ITEM SCHEDULE
System Concept Date 0 System Requirements Review 0
System Design Review 0 Software Spec. Review 0
Pre. Design Review 0 Critical Design Review 0
Test Readiness Review 0 Functional Config Audit 0
Physical Config Audit 0 Functional Qual Review 0
Oper Test & Evaluation 0

COMPONENT 1 titled: CSC 1

DESCRIPTORS
Internal Integ 0.50 External Integ 0.50
Utilization Fraction 0.50

SCHEDULE
Software Spec. Review 894 Pre. Design Review 0
Critical Design Review 0 Test Readiness Review 0

Functional Config Audit 0

LANGUAGE 1 DESCRIPTORS
Language Ada95 Source Code 20000 Non-executable SLOC 0.00
Complexity 1 1.00 Complexity 2 1.00 Productivity Factor 5.000

Application 5.50 New Design 1.00 New Code 1.00

Application Categories Mix New Design New Code
User Defined (APPL=5.50) 1.00 1.00 1.00
DATA S/R 0.00 0.00 0.00
Online Comm 0.00 0.00 0.00
Realtime C&C 0.00 0.00 0.00
Interactive 0.00 0.00 0.00
Mathematical 0.00 0.00 0.00
String Manip 0.00 0.00 0.00
Operating Systems 0.00 0.00 0.00

119

--- PRICE SOFTWARE MODEL ---
Acquisition Mode

DATE Tuesday June 23 1998 TIME 12:44 PM Project : PRICENEW
394028

COMPONENT 2 titled: CSC 2

DESCRIPTORS
Internal Integ 0.50 External Integ 0.50
Utilization Fraction 0.50

SCHEDULE
Software Spec. Review 894 Pre. Design Review 0
Critical Design Review 0 Test Readiness Review 0
Functional Config Audit 0

LANGUAGE 1 DESCRIPTORS
Language Ada%5 Source Code 30000 Non-executable SLOC 0.00
Complexity 1 1.00 Complexity 2 1.00 Productivity Factor 5.000

Application 5.50 New Design 1.00 New Code 1.00

Application Categories Mix New Design New Code
User Defined (APPL = 5.50) 1.00 1.00 1.00
DATA S/R 0.00 0.00 0.00
Online Comm 0.00 0.00 0.00
Realtime C&C 0.00 0.00 0.00
Interactive 0.00 0.00 0.00
Mathematical 0.00 0.00 0.00
String Manip 0.00 0.00 0.00
Operating Systems 0.00 0.00 0.00

120

--- PRICE SOFTWARE MODEL ---

Acquisition Mode
DATE Tuesday June 23 1998 TIME 12:44 PM Project : PRICENEW
394028
CSCI2 Development Item
ITEM DESCRIPTORS
Platform 1.80 Mgmt Complexity 1.00 Cost 0.00
Internal Integ 0.500 External Integ 0.500 Utilization 0.50
ITEM SCHEDULE
System Concept Date 0 System Requirements Review 0
System Design Review 0 Software Spec. Review 894
Pre. Design Review 0 Critical Design Review 0
Test Readiness Review 0 Functional Config Audit 0
Physical Config Audit 0 Functional Qual Review 0
Oper Test & Evaluation 0 '

LANGUAGE 1 DESCRIPTORS

Language C++ Source Code 80000 Non-executable SLOC 0.00
Complexity 1 0.80 Complexity 2 1.00 Productivity Factor 5.000
Application 5.50 New Design 1.00 New Code 1.00
Application Categories Mix NewDesign New Code
User Defined (APPL = 5.50) 1.00 1.00 1.00
DATA S/R 0.00 0.00 0.00
Online Comm 0.00 0.00 0.00
Realtime C&C 0.00 0.00 0.00
Interactive 0.00 0.00 0.00
Mathematical 0.00 0.00 0.00
String Manip 0.00 0.00 0.00
Operating Systems 0.00 0.00 0.00

121

--- PRICE SOFTWARE MODEL ---
Acquisition Mode

DATE Tuesday June 23 1998 TIME 12:44 PM Project : PRICENEW

394028
CSCI 3 Development Item
ITEM DESCRIPTORS
Platform 1.80 Mgmt Complexity 1.00 Cost 0.00

Internal Integ 0.500 External Integ 0.500 Utilization 0.50

ITEM SCHEDULE
System Concept Date 0 System Requirements Review 0
System Design Review 0 Software Spec. Review 894
Pre. Design Review 0 Critical Design Review 0
Test Readiness Review 0 Functional Config Audit 0
Physical Config Audit 0 Functional Qual Review 0

0 .

Oper Test & Evaluation

LANGUAGE 1 DESCRIPTORS

Language Ada95 Source Code 45000 Non-executable SLOC 0.00
Complexity 1 1.00 Complexity 2 1.00 Productivity Factor 5.000
Application 5.50 New Design 1.00 New Code 1.00
Application Categories Mix New Design New Code
User Defined (APPL = 5.50) 1.00 1.00 1.00
DATA S/R 0.00 0.00 0.00
Online Comm 0.00 0.00 0.00
Realtime C&C 0.00 0.00 0.00
Interactive 0.00 0.00 0.00
Mathematical 0.00 0.00 0.00
String Manip 0.00 0.00 0.00
Operating Systems 0.00 0.00 0.00

122

--- PRICE SOFTWARE MODEL ---
Life Cycle Mode

DATE Tuesday June 23 1998 TIME 12:45PM Project : PRICENEW

394028

Price S Model

SYSTEM SUMMARY TOTALS

Costs in Person Months
MAINTENANCE ENHANCEMENT GROWTH TOTAL

Design Engineering
Programming

Data

Systems Eng/Prog Mgmt
Quality Assurance
Configuration Control

TOTAL
Acquisition Costs
Modification Costs
Life Cycle Costs

Total Cost

176.8 269.8 1879 6345
117.8 2223 1191 4592
95.4 114.5 672 2771
103.0 180.8 1283 4121
96.2 98.5 600 2547
96.2 98.5 668 2615
685.4 984.5 6292 2299.1
6899.8

0.0
2299.1
9199.0

123

--- PRICE SOFTWARE MODEL ---

Life Cycle Mode
DATE Tuesday June 23 1998 TIME 12:46 PM Project : PRICENEW
394028
CSCI'1 Devt. Item w/comps

Global Title: Uses System Globals
Escalation Title: Uses System Escalation
Financial Title: Uses System Financials
Deployment Title: Uses System Deployment

Costs in Person Months
20.1 YEAR OPERATIONAL LIFE

MAINTENANCE ENHANCEMENT GROWTH

Design Engineering 52.7 83.8 56.1
Programming 35.1 70.3 36.3
Data 27.7 354 19.9
Systems Eng/Prog Mgmt 30.3 55.5 37.8
Quality Assurance 28.1 31.0 18.1
Configuration Control 28.1 31.0 20.1
TOTAL 202.0 307.0 188.4
Summary
55000 Source Lines as of (JAN 18)

Initial Defects/KSLOC : 1.5

Acquisition Costs 2109.1 *

Life Cycle Costs 697.4

TOTAL 2806.5

124

TOTAL
192.5
141.8
83.0
123.6
77.2
79.2

697.4

--- PRICE SOFTWARE MODEL ---

Life Cycle Mode
DATE Tuesday June 23 1998 TIME 12:46 PM Project : PRICENEW
394028 '
CSCI2 Development Item

Global Title: Uses System Globals
Escalation Title: Uses System Escalation
Financial Title: Uses System Financials
Deployment Title: Uses System Deployment

Costs in Person Months
20.1 YEAR OPERATIONAL LIFE

MAINTENANCE ENHANCEMENT GROWTH TOTAL

Design Engineering 77.1 110.1 81.8 269.1
Programming 514 88.1 50.2 189.7
Data 433 47.5 29.6 120.4
Systems Eng/Prog Mgmt 45.8 75.4 56.8 178.0
Quality Assurance 433 39.7 25.8 108.7
Configuration Control 433 39.7 28.8 111.7
TOTAL 304.2 400.4 273.0 977.7
Summary
88000 Source Lines as of (JAN 18)

Initial Defects/KSLOC : 1.8

Acquisition Costs 25422 *

Life Cycle Costs 977.7

TOTAL 3519.9

125

--- PRICE SOFTWARE MODEL ---

Life Cycle Mode
DATE Tuesday June 23 1998 TIME 12:46 PM Project : PRICENEW
394028
CSCI 3 Development Item

Global Title: Uses System Globals
Escalation Title: Uses System Escalation
Financial Title: Uses System Financials
Deployment Title: Uses System Deployment
Costs in Person Months

20.1 YEAR OPERATIONAL LIFE

MAINTENANCE ENHANCEMENT GROWTH TOTAL

Design Engineering 47.0 75.9 50.0 172.8
Programming 313 63.9 32.5 127.7
Data 244 31.7 17.7 73.7
Systems Eng/Prog Mgmt 26.9 50.0 33.7 110.5
Quality Assurance 248 27.8 16.1 68.7
Configuration Control 24.8 27.8 17.8 70.5
TOTAL 179.2 277.1 167.8 624.1
Summary
49500 Source Lines as of (JAN 18)

Initial Defects/KSLOC : 1.5

Acquisition Costs 1786.1 *

Life Cycle Costs 624.1

TOTAL 2410.2

126

--- PRICE SOFTWARE MODEL ---

Life Cycle Mode

CSCI 1 Development Item

ANNUAL ACTIVITY Costs in Person Months

YEAR MAINTENANCE ENHANCEMENT GROWTH TOTAL

1998 334 6.9 2.6 42.90
1999 36.2 17.9 7.1 61.20
2000 25.5 254 10.7 61.60
2001 18.1 29.9 13.3 61.30
2002 13.7 31.9 15.2 60.80
2003 10.9 32.0 16.2 59.10
2004 9.1 30.6 16.6 56.30
2005 7.9 28.0 16.5 52.40
2006 7.0 24.8 15.8 47.60
2007 6.2 21.2 14.8 42.20
2008 5.6 17.4 134 36.40
2009 5.0 13.7 11.7 30.40
2010 4.5 10.3 100 24.80
2011 4.0 ‘ 7.3 8.1 19.40
2012 3.5 4.8 6.3 14.60
2013 3.0 2.8 4.6 10.40
2014 2.6 1.4 2.9 6.90
2015 22 0.6 1.6 4.40
2016 1.9 0.2 0.7 2.80
2017 1.6 0.0 0.1 1.70
2018 0.1 0.0 0.0 0.10
TOTAL: 202.00 307.10 188.20 697.30

127

--- PRICE SOFTWARE MODEL ---

Life Cycle Mode

CSCI 2 Development Item

ANNUAL ACTIVITY Costs in Person Months

YEAR MAINTENANCE ENHANCEMENT GROWTH TOTAL

1998 38.7 9.0 3.8 51.5
1999 47.7 234 10.4 81.5
2000 37.4 33.1 15.5 86.0
2001 28.5 39.0 19.3 86.8
2002 224 41.6 22.0 86.0
2003 18.4 41.7 23.5 83.6
2004 15.6 39.9 24.1 79.6
2005 13.5 36.6 23.9 74.0
2006 11.9 324 22.9 67.2
2007 10.6 27.6 21.4 59.6
2008 : 9.5 22.7 194 51.6
2009 8.6 17.8 17.1 43.5
2010 7.7 134 14.5 35.6
2011 6.8 9.5 11.8 28.1
2012 6.1 6.2 9.1 21.4
2013 53 3.7 6.6 15.6
2014 4.7 1.9 4.3 10.9
2015 4.1 0.8 24 7.3
2016 3.5 0.2 1.0 4.7
2017 3.0 0.0 0.2 3.2
2018 02 0.0 0.0 0.2
TOTAL 304.2 400.5 273.2 977.9

128

YEAR MAINTENANCE ENHANCEMENT GROWTH

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
~ 2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
TOTAL

--- PRICE SOFTWARE MODEL ---

Life Cycle Mode

CSCI 3 Development Item
ANNUAL ACTIVITY Costs in Person Months

31.40
32.80
22.50
15.80
11.80
9.40
7.90
6.80
6.00
5.40
4.90
4.40
3.90
3.40
3.00
2.60
2.20
1.90
1.60
1.30
0.10
179.1

6.20
16.20
22.90
27.00
28.80
28.90
27.60
25.30
22.40
19.10
15.70
12.30
9.30
6.60
4.30
2.60

1.30
0.50
0.10
0.00
0.00
2771

129

2.30
6.30
9.50
11.90
13.50
14.50
14.80
14.70
14.10
13.20
11.90
10.50
8.90
7.30
5.60
4.00
2.60
1.50
0.60
0.10
0.00
167.8

TOTAL
39.90
55.30
54.90
54.70
54.10
52.80
50.30
46.80
42.50
37.70
32.50
27.20
22.10
17.30
12.90
9.20
6.10
3.90
2.30
1.40
0.10
624.0

--- PRICE SOFTWARE MODEL ---

Life Cycle Mode

PRICE-S Total System Support Costs for Twenty

Years

ANNUAL ACTIVITY Costs in Person Months

YEAR MAINTENANCE ENHANCEMENT GROWTH

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018

TOTAL:

103.50
116.70
85.40
62.40
47.90
38.70
32.60
28.20
24.90
22.20
20.00
18.00
16.10
14.20
12.60
10.90
9.50
8.20
7.00
5.90
0.40
685.30

130

22.10
57.50
81.40
95.90
102.30
102.60
98.10
89.90

79.60 -

67.90
55.80
43.80
33.00
23.40
15.30
9.10
4.60
1.90
0.50
0.00
0.00
984.70

8.70
23.80
35.70
44.50
50.70
54.20
55.50
55.10
52.80
49.40
44.70
39.30
33.40
27.20
21.00
15.20

9.80

5.50

2.30

0.40

0.00

629.20

TOTAL
134.30
198.00
202.50
202.80
200.90
195.50
186.20
173.20
157.30
139.50
120.50
101.10

82.50
64.80
48.90
35.20
23.90
15.60
9.80
6.30
0.40
2299.20

Appendix D: SEER-SEM Report

SEER-SEM Baseline Inputs
SEER-SEM (TM) Software Schedule, Cost & Risk Estimation Vers. 4.52d
Project: SEER-SEM CSCI: CSCI2 Inputs 6/23/98

Least

LINES
New Lines of Code 80,000
Pre-exists, not designed for reuse 0
Pre-existing lines of code 0
Lines to be deleted in pre-exstg 0
Redesign required 5.00%
Reimplementation required 1.00%
Retest required 10.00%
Pre-exists, designed for reuse 0
Function Implementation Mechanism
CSCIs Included In Size 1
PERSONNEL CAPABILITIES & EXPERIENCE
Analyst Capabilities Low
Analyst's Application Experience Nom-
Programmer Capabilities Nom
Programmer's Language Experience Hi
Host System Experience Nom
Target System Experience Nom
Practices & Methods Experience Nom
DEVELOPMENT SUPPORT ENVIRONMENT
Modern Development Practices Use Nom-
Automated Tools Use Nom
Logon thru Hardcopy Turnaround VLo
Terminal Response Time Low-
Multiple Site Development Nom
Resource Dedication Nom
Resource and Support Location Nom
Host System Volatility Nom
Process Volatility Low
PRODUCT DEVELOPMENT REQUIREMENTS
Requirements Volatility (Change) Nom
Specification Level — Reliability Hi+
Test Level Hit+
Quality Assurance Level Hi-
Rehost from Development to Target Nom
PRODUCT REUSABILITY REQUIREMENTS
Reusability Level Required Nom
Software Impacted by Reuse 100.00%
DEVELOPMENT ENVIRONMENT COMPLEXITY
Language Type (complexity) Hi
Host Development System Complexity Nom
Application Class Complexity Hi-
Process Improvement Nom
TARGET ENVIRONMENT
Special Display Requirements Nom
Memory Constraints Hi-
Time Constraints Nom
Real Time Code Nom
Target System Complexity Nom
Target System Volatility Hi-

131

12:17:31
PM

Likely

80,000

0

0

0

10.00%
5.00%
40.00%

0

C++

1

Nom
Nom
Hi
VHi
Hi
Hi
Hi

Nom
Nom+
Low-
Hi-
Nom
Nom
Nom
Nom
Low+

Nom
Hi+
Hi+
Hi+

Hi

Nom
100.00%

Hi
Nom
Hi
Nom

Hi

Hi
Nom+
Nom+
Nom
Hi

Most

80,000
0

0

0
40.00%
10.00%
100.00%
0

1

Hi
Nom+
VHi
EHi
VHi
Hi
VHi

Nom+
Hi
Nom
Hi
Nom
Nom
Nom
Nom
Nom

Hi
VH-
VH-
VHi

VHi+

Nom
100.00%

VHi
Nom
Hi
Nom

VHi
Hi+
Hi-
Hi
Nom
Hi+

SEER-SEM Baseline Inputs Continued

SEER-SEM (TM) Software Schedule, Cost & Risk Estimation Vers. 4.52d

Project: SEER-SEM CSCI: CSCI 2 Inputs 6/23/98 12:17:31 PM
Least Likely Most
Security Requirements Nom Nom Nom

SCHEDULE & STAFFING CONSIDERATIONS
Required Schedule (Calendar Mos)

Start Date 8/01/94
Complexity (Staffing) VHi- VHi VHi+

- Staff Loading Nom
Min Time vs. Opt Effort Minimum Time
STAFFING CONSTRAINTS Start Month Min Staff Max Staff
Staff Level (next) 0 0.00 0.00
RISK ANALYSIS
Effort Probability 50.00%
Schedule Probability 50.00%
REQUIREMENTS
Requirements Complete at Start Low
Requirements Definition Formality Nom Nom+ Hi+
Requirements Effort After Baseline YES
SYSTEM INTEGRATION
CSClIs Concurrently Integrating 1
Concurrency of I&T Schedule Hi
Hardware Integration Level Hi VHi VHi
ECONOMIC FACTORS
Cost Input Base Year 1997
Purchased Items 0
AVERAGE MONTHLY LABOR RATE 15,200
Direct Software Management) 15,200
Software System Engineering 15,200
Software Design 15,200
Software Programming 15,200
Software Data Preparation 15,200
Software Test 15,200
Software Configuration Management 15,200
Software Quality Assurance 15,200
SOFTWARE MAINTENANCE
Years of Maintenance 20
Separate Sites . 1
Maintenance Growth Over Life 10.00%
Personnel Differences Low Nom- Nom
Development Environment Difference Nom Nom Nom+
Annua! Change Rate 10.00%
Maintenance Level (Rigor) Nom Nom Nom
Min Maintenance Staff (Optional) 0.0
Max Maintenance Staff (Optional) 0.0
Maintenance Monthly Labor Rate 15,200
Additional Annual Maintenance Cost 0
Maintenance Start Date 8/20/98
Percent To Be Maintained 100.00%
Maintain Total System YES
SOFTWARE CODE METRICS (Optional)
ESTIMATE TO COMPLETE
ADJUSTMENT FACTORS

132

Appendix E: SoftCost-OO Report

SOFTCOST-00 Project Summary Report Page 1

PROJECT INFORMATION

Project name : SOFTCOST

Estimate date and time: 06/24/98 09:47 am
Version:

Start date: 06/24/98

Number of Subprojects: 4

Calibration File Name: D:\AFIT\THESIS~I\SOFTCOST\THSCADA.CAL
WBS File Name: STANDARD.WBS
Work Holidays File Name: STANDARD.HOL

CALIBRATION COEFFICIENTS

Productivity multiplier (A) : 1.264
Schedule multiplier (B) : 3.200
Effort exponent (alpha) : 1.100
Schedule exponent (beta) : 0.370
Base effort constant (gamma) : 3.000
Work hours/person-month 0 152.0

SIZING SUB-MODEL WEIGHTING FACTORS

New OO Components : 1.000
Re-used OO Components : 0.200
Modified OO Components : 0.300
New Other Components : 1.000
Re-used Other Components : 0.250
Modified Other Components : 0.400

133

SOFTCOST-0O0 Project Summary Report Page 2

BASE ESTIMATE
Effective Produc- Average Confi-
Size Duration Effort tivity Staff dence
(XSLOC/FP) (months) (pm) (SLOC/pm) (persons) + (%)
SOFTCOST 175.0 44.7 1242.2 144.4 27.8 51.5
CSC1 20.0 14.1 107.4 161.8 7.6 38.0
CSC2 30.0 20.0 167.8 172.0 8.4 46.5 .
CSCI2 80.0 29.8 493.6 158.5 16.6 47.8
CSCI 3 45.0 23.5 62.1 166.0 11.2 46.9
SOFTCOST-0O0 Project Summary Report Page 3
SOFTCOST PROJECT FACTORS
Type of Software Avionics (Military)
System Architecture Centralized (1.000)
Number of Organizations Involved 1
Organizational Interface Complexity Nominal
Staff Resource Availability Nominal (1.000)
Computer Resource Availability Nominal (1.000)
Security Requirements Nominal (1.000)
SOFTCOST PROCESS FACTORS
Degree of Standardization High (1.190)
Scope of Support Nominal (1.000)
Use of Modern Software Methods Nominal
Use of Peer Reviews Nominal (1.000)
Use of Software Tools/Environment Nominal

Software Tool/Environment Stability = Nominal

SOFTCOST PRODUCT FACTORS

Technology Usage Factor Nominal (1.000)
Product Complexity Nominal (1.000)
Requirements Volatility Nominal (1.000)
Degree of Optimization Nominal (1.000)
Degree of Real-Time Nominal (1.000)
Re-use Benefits Nominal

134

SOFTCOST-0O Project Summary Report

Re-use Costs Nominal
Database Size Nominal
SOFTCOST PERSONNEL FACTORS
Number of OO Projects Completed 1
Analyst Capability Nominal
Applications Experience Nominal
Environment Experience Nominal
Language Experience Nominal
Methodology Experience Nominal
Team Capability Nominal
SOFTCOST-0OO Project Summary Report Page 4
CSC1 PROJECT FACTORS
Type of Software Avionics (Military)
System Architecture Centralized
Number of Organizations Involved 1
Organizational Interface Complexity Nominal
Staff Resource Availability Nominal
Computer Resource Availability Nominal
Security Requirements Nominal
CSC1 PROCESS FACTORS
Degree of Standardization High
Scope of Support Nominal
Use of Modern Software Methods Nominal
Use of Peer Reviews Nominal
Use of Software Tools/Environment Nominal
Software Tool/Environment Stability Nominal
CSC1 PRODUCT FACTORS
Technology Usage Factor Nominal
Product Complexity Nominal
Requirements Volatility Nominal
Degree of Optimization Nominal
Degree of Real-Time Nominal
Re-use Benefits Nominal
Re-use Costs Nominal
Database Size Nominal

135

Page 3 Cont.

(1.000)

(1.000)
(1.000)
(1.000)
(1.000)
(1.000)
(1.000)

Inherited

(1.000)

(1.000)
(1.000)
(1.000)

Inherited

(1.190)
(1.000)

(1.000)

Inherited

(1.000)
(1.000)
(1.000)
(1.000)
(1.000)

(1.000)

SOFTCOST-0O Project Summary Report Page 4 Cont.

CSC1 PERSONNEL FACTORS Inherited
Number of OO Projects Completed 1
Analyst Capability Nominal (1.000)
Applications Experience Nominal (1.000)
Environment Experience Nominal (1.000)
Language Experience Nominal (1.000)
Methodology Experience Nominal (1.000)
Team Capability Nominal (1.000)
KILO-SOURCE LINES OF CODE (KSLOC's) MOST
CSC1 MAX LIKELY MIN WEIGHTED
New OO Components 20.0 20.0 200 20.0
Re-used OO Components 0.0 0.0 0.0 0.0
Modified OO Components 0.0 0.0 0.0 0.0
New Other Components 0.0 0.0 0.0 0.0
Re-used Other Components 0.0 0.0 0.0 0.0
Modified Other Components 0.0 0.0 0.0 0.0

Total effective size : 20.0 KSLOC Size variance: 0.0 KSLOC

SOFTCOST-00 Project Summary Report Page 5
CSC2 PROJECT FACTORS Inherited
Type of Software Avionics (Military)
System Architecture Centralized (1.000)
Number of Organizations Involved 1
Organizational Interface Complexity Nominal
Staff Resource Availability Nominal (1.000)
Computer Resource Availability Nominal (1.000)
Security Requirements Nominal (1.000)
CSC2 PROCESS FACTORS Inherited
Degree of Standardization High (1.190)
Scope of Support Nominal (1.000)
Use of Modern Software Methods Nominal
Use of Peer Reviews Nominal (1.000)
Use of Software Tools/Environment Nominal

Software Tool/Environment Stability =~ Nominal

CSC2 PRODUCT FACTORS Inherited

136

SOFTCOST-0O0 Project Summary Report Page 5 Cont

Technology Usage Factor Nominal (1.000)
Product Complexity Nominal (1.000)
Requirements Volatility Nominal (1.000)
Degree of Optimization Nominal (1.000)
Degree of Real-Time Nominal (1.000)
Re-use Benefits Nominal
Re-use Costs Nominal
Database Size Nominal (1.000)
CSC2 PERSONNEL FACTORS Inherited
Number of OO Projects Completed 1
Analyst Capability Nominal (1.000)
Applications Experience Nominal (1.000)
Environment Experience Nominal (1.000)
Language Experience Nominal (1.000)
Methodology Experience Nominal (1.000)
Team Capability Nominal (1.000)
KILO-SOURCE LINES OF CODE (KSLOC's) MOST
CSC2 MAX LIKELY MIN WEIGHTED
New OO Components 30.0 30.0 30.0 30.0
Re-used OO Components 00 0.0 0.0 0.0
Modified OO Components 00 0.0 0.0 0.0
New Other Components 00 00 0.0 0.0
Re-used Other Components 00 0.0 0.0 0.0
Modified Other Components 00 00 0.0 0.0

Total effective size : 30.0 KSLOC Size variance: 0.0 KSLOC

SOFTCOST-0O0 Project Summary Report Page 6
CSCI2 | PROJECT FACTORS Inherited
Type of Software Avionics (Military)
System Architecture Centralized (1.000)
Number of Organizations Involved 1
Organizational Interface Complexity Nominal
Staff Resource Availability Nominal (1.000)
Computer Resource Availability Nominal (1.000)
Security Requirements Nominal (1.000)
CSCI2 PROCESS FACTORS Inherited

137

SOFTCOST-OO0 Project Summary Report Page 6 Cont.

Degree of Standardization High (1.190)
Scope of Support Nominal (1.000)
Use of Modern Software Methods Nominal
Use of Peer Reviews Nominal (1.000)
Use of Software Tools/Environment Nominal

Software Tool/Environment Stability =~ Nominal

CSCI2 PRODUCT FACTORS Inherited
Technology Usage Factor Nominal (1.000)
Product Complexity Nominal (1.000)
Requirements Volatility Nominal (1.000)
Degree of Optimization Nominal (1.000)
Degree of Real-Time Nominal (1.000)
Re-use Benefits Nominal
Re-use Costs Nominal
Database Size Nominal ' (1.000)
CSCI12 PERSONNEL FACTORS Inherited
Number of OO Projects Completed 1
Analyst Capability : Nominal (1.000)
Applications Experience Nominal (1.000)
Environment Experience » Nominal (1.000)
Language Experience Nominal (1.000)
Methodology Experience Nominal (1.000)
Team Capability Nominal (1.000)
KILO-SOURCE LINES OF CODE (KSLOC's) MOST
CSCI2 MAX LIKELY MIN WEIGHTED
New OO Components 80.0 80.0 80.0 80.0
Re-used OO Components 00 00 0.0 0.0
Modified OO Components 0.0 0.0 00 0.0
New Other Components 0.0 0.0 0.0 0.0
Re-used Other Components 00 00 0.0 0.0
Modified Other Components 00 00 0.0 0.0

Total effective size : 80.0 KSLOC Size variance: 0.0 KSLOC

138

SOFTCOST-0O0 Project Summary Report

Page 7

CSCI 3 PROJECT FACTORS Inherited

Type of Software Avionics (Military)

System Architecture Centralized (1.000)

Number of Organizations Involved 1

Organizational Interface Complexity Nominal

Staff Resource Availability Nominal (1.000)

Computer Resource Availability Nominal (1.000)

Security Requirements Nominal (1.000)

CSCI3 PROCESS FACTORS Inherited

Degree of Standardization High (1.190)

Scope of Support Nominal (1.000)

Use of Modern Software Methods Nominal

Use of Peer Reviews Nominal (1.000)

Use of Software Tools/Environment Nominal

Software Tool/Environment Stability =~ Nominal

CSCI 3 PRODUCT FACTORS Inherited

Technology Usage Factor Nominal (1.000)

Product Complexity Nominal (1.000)

Requirements Volatility Nominal (1.000)

Degree of Optimization Nominal (1.000)

Degree of Real-Time Nominal (1.000)

Re-use Benefits Nominal

Re-use Costs Nominal

Database Size Nominal (1.000)

CSCI 3 PERSONNEL FACTORS Inherited

Number of OO Projects Completed 1

Analyst Capability Nominal (1.000)

Applications Experience Nominal (1.000)

Environment Experience Nominal (1.000)

Language Experience Nominal (1.000)

Methodology Experience Nominal (1.000)

Team Capability Nominal (1.000)
KILO-SOURCE LINES OF CODE (KSLOC's) MOST

CSCI 3 MAX LIKELY MIN WEIGHTED

New OO Components 45.0 45.0 450 450

Re-used OO Components 00 0.0 0.0 0.0

139

SOFTCOST-0O0 Project Summary Report

Modified OO Components 0.0
New Other Components 0.0
Re-used Other Components 0.0
Modified Other Components 0.0

0.0
0.0
0.0
0.0

Page 7 Cont.

0.0
0.0
0.0
0.0

Total effective size : 45.0 KSLOC Size variance: 0.0 KSLOC

140

0.0
0.0
0.0
0.0

Appendix F: SoftEst Report

Project Name: SoftEst

Wrap Rate: 100.00
Hours per Man-month: 152

Total Effort: 2703.42

- Longest Schedule: 50.64
Total Size: 175000.00
Size Std Dev: 0.00
Total Cost: 41091952.00

Maintenance Settings

Base Year Effort: 270.34
Total Maint. Effort: 5663.66
Calculation Method: 0
Annual Change Traffic: 10
Years to Maintain: 20
ADSI: 175000.00
Assessment & Assimilation: 4
S/W Understanding: 30
Redesign: 15

Recode: 15

Retest: 15

Number of CSCIs: 3

CSCI name: CSCI_1

Model Mode: AdlaREMBEDDED
EAF: 2.07

Size: 50000.00

Standard Deviation: 0.00
Effort: 745.79

Cost: 11335989.00

Longest Schedule: 52.28
KDSI: 50.00

Constraint Settings
Constraint Mode: None
User-input Total Schedule: 0.0

141

SoftEst Report ~ Page 2
Phase Schedule . FSP
0 9.9 6.7
1 12.9 9.9
2 83 19.5
3 5.0 24.7
4 6.9 20.8
5 9.3 13.2

Environmental Parameter Settings

1 Analyst Capability,

2 Programmer Capability,

3 Application Experience,

4 Virtual Machine Experience,

5 Language Experience,

6 Processing Time Constraints,

7 Hardware Storage Constraints,

8 Virtual Machine Volatility,

9 Development Turn Around Time,
10 Requirements Volatility,

11 Required Reliability,

12 Data Base Size,

13 Product Complexity,

14 Design For Reuse,

15 Modern Development Practices,
16 Use Of Automated Tools,

17 Classified Environment,

18 Schedule Constraints,

19 Platform Risk,

CSCI Calculation Results

9.9,
12.9,
8.3,
5.0,
6.9,
93,

phase 0, effort 66.8, schedule
phase 1, effort 128.0, schedule
phase 2, effort 161.4, schedule
phase 3, effort 122.4, schedule
phase 4, effort 144.7, schedule
phase 5, effort 122.4, schedule

NM,
NM,
NM,
NM,
NM,
NM,
NM,
NM,
NM,
NM,
HI,

NM,
NM,
NM:
NM,
NM,
VL,

NM,
VH,

FSP 6.7,
FSP 9.9,
FSP 19.5,
FSP 24.7,
FSP 20.8,
FSP 13.2,

142

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.1500
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.8000

cost 1015163
cost 1945730
cost 2453311
cost 1861133
cost 2199520
cost 1861133

SoftEst Report
Number of CSCs: 2

CSC name: CSC_1

Size Type: Source Lines of Code
Coding Language: unspecified
FP-SLOC Conversion: 1

Size: 20000.00

Standard Deviation: 0.00
Most Likely Estimate: 20000.00
Low Estimate: 20000.00

High Estimate: 20000.00

EDSI: 0.00
ADSI: 0.00
DM: 0.00
CM: 0.00
IM: 0.00
Cost: 0.00
Schedule: 0.00
Effort: 0.00

CSC name: CSC_2

Size Type: Source Lines of Code
Coding Language: unspecified
FP-SLOC Conversion: 1

Size: 30000.00

Standard Deviation: 0.00

Most Likely Estimate: 30000.00
Low Estimate: 30000.00

High Estimate: 30000.00

EDSI: 0.00
ADSI: 0.00
DM: 0.00
CM: ~0.00
IM: 0.00
Cost: 0.00
Schedule: 0.00
Effort: 0.00

CSCI name: CSCI_2
Model Mode: (null)

EAF: 1.69

Size: 80000.00
Standard Deviation: 0.00
Effort: 1282.16

143

Page 3

SoftEst Report ~ Page 4

Cost: 19488872.00
Longest Schedule: 62.17
KDSI: 80.00

. Constraint Settings
Constraint Mode: None
User-input Total Schedule: 0.0

Phase Schedule FSP
0 11.8 9.7

1 15.3 14.3
2 0.8 28.2
3 59 35.7
4 8.3 30.1
5 11.0 19.1

Environmental Parameter Settings

1 Analyst Capability, NM, 1.0000
2 Programmer Capability, HI, 0.8600
3 Application Experience, NM, 1.0000
4 Virtual Machine Experience, NM, 1.0000
5 Language Experience, HI, 0.9500
6 Processing Time Constraints, NM, 1.0000
7 Hardware Storage Constraints, NM, 1.0000
8 Virtual Machine Volatility, NM, 1.0000
9 Development Turn Around Time, NM, 1.0000
10 Requirements Volatility, NM, 1.0000
11 Required Reliability, HI, 1.1500
12 Data Base Size, NM, 1.0000
13 Product Complexity, NM, 1.0000
14 Design For Reuse, NM, 1.0000
15 Modern Development Practices, NM, 1.0000
16 Use Of Automated Tools, NM, 1.0000
17 Classified Environment, NM, 1.0000
18 Schedule Constraints, NM, 1.0000
19 Platform Risk, VH, 1.8000

CSCI Calculation Results

phase 0, effort 114.8, schedule 11.8, FSP 9.7, cost 1745272
phase 1, effort 220.1, schedule 15.3, FSP 14.3, cost 3345105

144

SoftEst Report Page 5

phase 2, effort 277.5, schedule
phase 3, effort 210.5, schedule
phase 4, effort 248.8, schedule
phase 5, effort 210.5, schedule

Number of CSCs: 1

CSC name: Default CSC

9.8,
5.9,
8.3,
11.0,

Size Type: Source Lines of Code

Coding Language: unspecified
FP-SLOC Conversion: 1

Size: 80000.00

Standard Deviation: 0.00
Most Likely Estimate: 80000.00
Low Estimate: 80000.00

High Estimate: 80000.00

EDSI: 0.00
ADSI: 0.00
DM: 0.00
CM: 0.00
IM: 0.00
Cost: 0.00
Schedule: 0.00
Effort: 0.00

CSCI name: CSCI_3

Model Mode: AdaEMBEDDED
EAF: 2.07

Size: 45000.00

Standard Deviation: 0.00
Effort: 675.47

Cost: 10267090.00

Longest Schedule: 50.64
KDSI: 45.00

Constraint Settings
Constraint Mode: None

User-input Total Schedule: 0.0
Phase Schedule FSP

0 9.6

6.3

FSP 28.2,
FSP 35.7,
FSP 30.1,
FSP 19.1,

145

cost 4217740
cost 3199666
cost 3781423
cost 3199666

SoftEst Report ~ Page 6

1 12.5 9.3

2 8.0 18.2

3 4.8 23.1

4 6.7 19.5

5 9.0 124

Environmental Parameter Settings

1 Analyst Capability, NM, 1.0000
2 Programmer Capability, NM, 1.0000
3 Application Experience , NM, 1.0000
4 Virtual Machine Experience, NM, 1.0000
5 Language Experience, NM, 1.0000
6 Processing Time Constraints, NM, 1.0000
7 Hardware Storage Constraints, = NM, 1.0000
8 Virtual Machine Volatility, NM, 1.0000
9 Development Turn Around Time, NM, 1.0000
10 Requirements Volatility, NM, 1.0000
11 Required Reliability, HI, 1.1500
12 Data Base Size, NM, 1.0000
13 Product Complexity, NM, 1.0000
14 Design For Reuse, NM, 1.0000
15 Modern Development Practices, NM, 1.0000
16 Use Of Automated Tools, NM, 1.0000
17 Classified Environment, VL, 1.0000
18 Schedule Constraints, NM, 1.0000
19 Platform Risk, VH, 1.8000

CSCI Calculation Results

phase 0, effort 60.5, schedule 9.6,FSP 6.3, cost 919441

phase 1, effort 115.9, schedule 12.5,FSP 9.3, cost 1762262
phase 2, effort 146.2, schedule 8.0,FSP 18.2, cost 2221982
phase 3, effort 110.9, schedule 4.8,FSP 23.1, cost 1685642
phase 4, effort 131.1, schedule 6.7,FSP 19.5, cost 1992122
phase 5, effort 110.9, schedule 9.0,FSP 12.4, cost 1685642

Number of CSCs: 1

CSC name: DefaultCSC

Size Type: Source Lines of Code
Coding Language: unspecified
FP-SLOC Conversion: 1

146

SoftEst Report ~ Page 7

Size: 45000.00

Standard Deviation: 0.00

Most Likely Estimate: 45000.00
Low Estimate: 45000.00

High Estimate: 45000.00

EDSI: 0.00
ADSI: 0.00
DM: 0.00
CM: 0.00
IM: 0.00
Cost: 0.00
Schedule: 0.00
Effort: 0.00

Last Calibration Mode Used was AdaEMBEDDED
Calibration Set Used: Default Calibration Set
Development Mode: EMBEDDED

Effort Coefficient: 3.3120
Effort Exponent: 1.20

"Schedule Coefficient: 4.3760

Schedule Exponent: 0.32

Development Mode: SEMIDETACHED
Effort Coefficient: 3.9700

Effort Exponent: 1.12

Schedule Coefficient: 3.8000

Schedule Exponent: 0.35

Development Mode: ORGANIC
Effort Coefficient: 3.4644
Effort Exponent: 1.05

Schedule Coefficient: 3.6500
Schedule Exponent: 0.38

Development Mode: AdaEMBEDDED
Effort Coefficient: 6.8000

Effort Exponent: 0.94

Schedule Coefficient: 4.3760

147

SoftEst Report Page 8

Schedule Exponent: 0.32

Development Mode: AdaSEMIDETACHED
Effort Coefficient: 6.8000

Effort Exponent: 0.94

Schedule Coefficient: 4.3760

Schedule Exponent: 0.32

Development Mode: AdaORGANIC
Effort Coefficient: 6.8000

Effort Exponent: 0.94

Schedule Coefficient: 4.3760
Schedule Exponent: 0.32

Development Mode: OBJECT
Effort Coefficient: 6.8000
Effort Exponent: 0.94
Schedule Coefficient: 4.3760
Schedule Exponent: 0.32

Distribution Set Used: Default Distribution Set

Phase Effort Schedule
1 0.12 0.30
2 023 0.39
3 029 0.25
4 022 0.15
5 0.26 0.21
6 022 0.28

148

Appendix G: SPR Knowledge Plan 2.0

Project Task Category Report for KnowledgePLAN 2.0 Page 1

Task Category Overview
Security:NONE Project: THESIS NEW
Organization: Description:
Location: Version:01
An asterisk (*) below indi imation of that column is enabled for the task category.
Task Category Plan Dates Plan Work
Task Code Start Finish FIE Plan
System deployment SystemDeploy 6/25/98 7/8/98 3.00* 2995mo *
[Year 01]
Service and support [Year 01)
Field service [Year 01) FieldService 7/898 713199 1432 * 3,78131mo *
Customer support [Year 01] CustSupport 7/8/98 71399 124 * 32662mo *
Central maintenance [Year 01]
Maintenance defect rework preparation [Year 01] MaintDefRepPrep 7/898 7/13/99 0.63 * 166.51 mo *
Maintenance defect rework execution [Year 01] MaintDefRepExec 7/898 7/13/99 121 * 319.15mo *
Maintenance defect rework repair [Year 01) MaintDefRepRepair 7/8/98 7/13/99 356 * 93895mo *
Maintenance management [Year 01] MaintMgmt 7/898 7/13/99 463 * 1222.87mo *
Year 1 Total
[Year 02}
Service and support [Year 02]
Field service [Year 02] FieldService 7/8/99 7/12/00 1267 * 334391 mo *
Customer support [Year 02] CustSupport 7/8/99 7/12/00 1.09 * 28884mo *
Central maintenance [Year 02]
Maintenance defect rework preparation [Year 02} MaintDefRepPrep 7/8/9% 7/12/00 056 * 14730mo *
Maintenance defect rework execution [Year 02] MaintDefRepExec 7899 771200 107 * 282.32mo *
Maintenance defect rework repair [Year 02] MaintDefRepRepair 7899 71200 314+ 82952mo *
Maintenance management [Year 02] MaintMgmt 7899 7/12/00 405* 10700Imo *
Year 2 Total
[Year 03]
Service and support [Year 03]
Field service [Year 03] FieldService 7700 7/12/01 11.01 * 2,906.50 mo *
Customer support [Year 03] CustSupport 7/700 7/12/01 095 * 251.06mo *
Central maintenance {Year 03]
Maintenance defect rework preparation [Year 03] MaintDefRepPrep 700 7/12/01 049 * 12809 mo *
Maintenance defect rework execution [Year 03] MaintDefRepExec 700 7/12/01 093 * 24550 mo *
Maintenance defect rework repair [Year 03] MaintDefRepRepair 7700 7/12/01 274 * 72363 mo *
Maintenance management [Year 03] MaintMgmt 7700 7/12/01 362 * 95537mo *
Year 3 Total
[Year 04]
Service and support [Year 04]
Field service [Year 04] FieldService 7701 71102 937 * 2473.18mo *
Customer support [Year 04] CustSupport 7/7/01 7/11/02 031 * 21363mo *
Central maintenance [Year 04]
Maintenance defect rework preparation [Year 04] MaintDefRepPrep 7/7/01 7/11/02 041 * 108.87mo *
Maintenance defect rework execution [Year 04] MaintDefRepExec 01 U102 079 * 20867 mo *
Maintenance defect rework repair [Year 04] MaintDefRepRepair 7701 71102 233+ 61420 mo *
Maintenance management [Year 04] MaintMgmt 7/701 71102 3.04 * 802.51 mo *
Year 4 Totl ~
[Year 05]
Service and support [Year 05]
Field service [Year 05} FieldService 702 7/10/03 771 * 2,035.78 mo *
Customer support [Year 05] CustSupport 7702 7/10/03 067 * 175.85mo *
Central maintenance {Year 05]
Maintenance defect rework preparation [Year 05] MaintDefRepPrep 7702 710/03 034 * 89.66 mo *
Maintenance defect rework execution [Year 05] MaintDefRepExec 77002 7/10/03 065 * 171.85 mo *
Maintenance defect rework repair [Year 05] MaintDefRepRepair 71702 7/10/03 191 * 504.77 mo *
Maintenance management [Year 05] MaintMgmt 7/7/02 7/10/03 246 * 649.65mo *
‘Year 5 Total
Grand Total 19.76 1,182.094d

149

Over-

0.00d

0.00d
0.00d

0.00d
0.00d
0.00d
0.00d

" 0.00d
0.00d

0.00d
0.00d
000d
0.00d

0.00d
0.00d

0.00d
0.00d
0.00d
0.00d

0.00d
0.00d

0.00d
0.00d
0.00d
0.00d

0.00d
0.00d

0.00d
0.00d
000d
000d

0.00mo

Project Task Category Report for KnowledgePLAN 2.0 Page 2

Task Category Overview

Security:NONE Project: THESIS NEW

Organization: Description:

Location: Version:01

An asterisk (*) below indi imation of that column is enabled for the task category.

Task Category Cost Plan
Task Code Plan OT Fixed Deliverable
- System deployment SystemDeploy $23,960 $0 $0 3,555.00 fp *
[Year 01]
Service and support [Year 01}
Field service [Year 01] FieldService $3,025,048 S0 $0 925.00fp *
Customer support [Year 01} CustSupport $261,296 $0 $0 925.00 fp * v
Central maintenance [Year 01}
Maintenance defect rework preparation [Year 01] MaintDefRepPrep $133,208 S0 $0 4550kl *
Maintenance defect rework execution [Year 01] MaintDefRepExec $255,320 80 $0 4550kl *
Maintenance defect rework repair [Year 01] MaintDefRepRepair $751,160 SO $0 266.00 df *
Maintenance management [Year 01] MaintMgmt $978,296 80 $0 3200 pe * -
Year 1 Total $5,404,328

[Year 02]

Service and support [Year 02]

Field service [Year 02] FieldService $2,675,128 $0 $0 818.00 fp *
Customer support [Year 02] CustSupport $231,072 $0 $0 818.00fp *
Central maintenance [Year 02]
Maintenance defect rework preparation [Year 02] MaintDefRepPrep $117,840 S0 $0 4025kl *
Maintenance defect rework execution [Year 02] MaintDefRepExec $225,856 $0 $0 40.25k1 *
Maintenance defect rework repair [Year 02] MaintDefRepRepair $663,616 S0 $o 23500 df *
Maintenance management [Y ear 02] MaintMgmt $856,008 S0 $0 28.00pe *
Year 2 Total $4,769,520

[Year 03]

Service and support [Year 03]

Field service [Year 03] FieldService $2,325200 SO 30 711.00fp *
Customer support [Year 03} CustSupport $200,848 80 $0 711.00 6 *

Central maintenance [Year 03] $0 $0
Maintenance defect rework preparation [Year 03] MaintDefRepPrep $102,472 $0 $0 3500kl *
Maintenance defect rework execution {Year 03] - MaintDefRepExec $196,400 $0 $0 35.00kl *
Maintenance defect rework repair [Year 03] MaintDefRepRepair $578904 $0 $0 205.00 df *

Maintenance management [Year 03] MaintMgmt $764,296 $0 30 25.00pe *
Year 3 Total $4,168,120

[Year 04}

Service and support [Year 04]

Field service [Year 04] FieldService $1,978,544 S0 $0 605.00 fp *
Customer support [Year 04] CustSupport $170,904 $0 $0 605.00 fp *
Central maintenance [Year 04)

Maintenance defect rework preparation [Year 04] MaintDefRepPrep 387,096 $0 $0 29.75kl *
Maintenance defect rework execution [Year 04] - MaintDefRepExec $166,936 $0 $0 29.75kl *
Maintenance defect rework repair [Year 04] MaintDefRepRepair $491,360 SO $0 174.00 df * a

Maintenance management [Year 04] MaintMgmt $642,008 $0 $0 21.00 pe *

Year 4 Total $3,536,848

[Year 05]

Service and support [Year 05] .
Field service [Year 05) FieldService $1,628624 30 $0 498.00 fp *
Customer support [Year 05] CustSupport $140,680 30 $0 49800 fp *

Central maintenance [Year 05]

Maintenance defect rework preparation [Year 05] MaintDefRepPrep $71,728 $0 $0 2450k *
Maintenance defect rework execution [Year 05] MaintDefRepExec $137,480 $0 $0 2450 k1 *
Maintenance defect rework repair [Year 05} MaintDefRepRepair $403,816 S0 $0 143.00 df *
Maintenance management [Year 05] MaintMgmt $519,720 $0 $0 17.00 pe *
Year 5 Total $2,902,048
Grand Total $20,780,864 S0 $0

150

SPR KnowledgePLAN Maintenance Attribute Inputs

SPR KnowledgePLAN Page 1 of 1
MAINTENANCE ATTRIBUTES
Security: NONE Project: SPR Thesis

Organization: - Description:

Location: Version: 01
Personnel

1683 Maintenance Personnel STAFFING 3

1684 Maintenance Personnel 3
EXPERIENCE

1685 Maintenance Personnel 3
EDUCATION
Personnel Average 3
Technology

1699 Maintenance platform computing 3
support

1700 Release control methods 3

1701 Problem tracking and reporting 3

1702 Replacement and restructure 3
planning
Technology Average 3
Process

1643 Centeral Maintenance 3

1644 Field Maintenance 3

1645 Software warranty coverage 3

1646 Customer support 3

1647 Delivery Support 3
Process Average 3
Environment

1612 Installation and Production 3
Geography

1614 Number of system installation sites 3

1615 Annual growth in installation sites 3
(percent)

1616 Number of system maintenance sites 3
Environment Average 3
Product

1611 Program execution frequency 3

1609 Current system status 3

1610 Long range product stability 3

151

SPR KnowledgePLAN 2.0 Project Calibration Inputs

PROJECT
CALIBRATION

Security: NONE Project: THESIS NEW
Organization: Description:

Location: Version: 01
Resources
Calendar: SPR Base
Calendar
Overtime Percent of Plan 0.00
Work:
Global Resource Adjustment: 1.00

Delete Non-Estimated Resource Assignments? No
Tasks

Task Inclusion
Automatically Add Tasks? No
Automatically Delete Tasks? No
Estimate Excluded Tasks? Yes
Estimate Dependencies? Yes
Calculation
Automatic
Estimation
Enable Automatic Yes
Estimation?
Perform Schedule and Summarize Yes
also?
Automatic Scheduling
Enable Automatic Yes
Scheduling?
Potential Defects
Re-estimate Potential Yes
Defects?

152

References

Analytic Sciences Corporation, The. The AFSC Cost Estimating Handbook. Reading
MA: prepared for USAF, Air Force Systems Command (AFSC), 1986.

Arthur, Jay. Software Evolution -The Software Maintenance Challenge, LifeStar
Publishing, Denver CO, 1997.

Belcher, Larry. “Software process improvements help Oklahoma ALC
increase productivity, reduce costs,” Leading Edge, February 1996.

Bischoff, Col Ron. “Design and Planning Make High-Tech F-22 Easy to Maintain and
Support,” Aviation Week & Space Technology, July 15, 1991.

Boehm, Barry W. Software Engineering Economics. Englewood Cliffs NJ: Prentice-
Hall Inc., 1981.

------- , “Software Risk Management,” IEEE Computer Society Press, Los Alamitos CA,
1989.

------- and Philip N. Papaccio. "Understanding and Controlling Software
Costs," IEEE Transactions on Software Engineering, 14: 1462 - 1477 (October
1988).

Boulware, Gary W., Belinda J. Nethery, and Bryan D. Turner. “Maintenance Software
Model Assumptions Versus Budgeting Realities,” Estimator, Spring 1991.
Stewart, Rodney D. and Richard M. Wyskida. Cost Estimator's Reference
Manual. New York NY: John Wiley & Sons, Inc., 1987.

Brooks, Frederick P. "The Mythical ManMonth," Addison Wesley, 1975. An updated
and expanded edition was published in 1995.

Coggins, George A. and Roy C. Russell. Software Cost Estimating Models: A
Comparative Study of What the Models Estimate. MS Thesis, AFIT/GCA/LAS/
93S-4. School of Systems and Logistics, Air Force Institute of Technology,
Wright Patterson AFB OH, September 1993 (ADA-275989).

Coleman, Don, Dan Ash, Bruce Lowther and Paul Oman. "Using Metrics to Evaluate
Software System Maintainability," IEEE Computer, 27, No. 8, August 1994: 44-
49.

Coleman, Don, Bruce Lowther and Paul Oman. "The Application of Software
Maintainability Models in Industrial Software Systems." Journal of Systems
Software 29, No. 1, April 1995: 3-16.

153

Department of the Air Force. Guidelines for Successful Acquisition and Management of
Software Intensive Systems, Volumes 1 and 2. Software Technology Support
Center, Hill Air Force Base UT, June 1996.

Department of Defense. Military Standard. Defense System Software Development.
DoD STD-2167A. Washington DC: GPO, 29 February 1988.

Department of Defense. Parametric Cost Estimating Handbook- Joint Government/
Industry Initiative, US Navy, Naval Sea Systems Command, Arlington VA, Fall
1995.

Engle, Charles B. “Why Use ADA for DoD Software Procurement,” Presentation Slide
Script-DCA100-93-D0066, Delivery Order -0045, March, 1996.

Fain, Lt Gen Jim, as quoted by Lt Gen Robert H. Ludwig. “The Role of Technology in
Modern Warfare,” Software Technology Conference, 1 992, Salt Lake City Utah,
April 14, 1992.

Ferens, Daniel V. "New Perspectives in Software Logistics Support,”
Logistics Spectrum, 4-8 (Spring 1992).

Ferens, Daniel V. "Evaluation of Eight Software Support Cost Models,"
Estimator, Spring 1991.

Ferens, Daniel V. and Robert B. Gurner. "An Evaluation of Three Function Point
Models for Estimation of Software Effort," NAECON Conference, 1992
Dayton, Oh, May 1992.

Gerlich, Rainer and Ulrich Denskat. “A Cost Estimation Model for Maintenance and
High Reuse, "Proceedings of the European Software Cost Modeling Conference,
1994, Ivrea, Italy, May 1994.

Glass, Robert L. “Software Reliability Guidebook,” Prentice-Hall, Englewood Cliffs NJ,
1979.

Glass, Robert R. and Ronald A. Noiseux. “Software Maintenance Guidebook.” Prentice-
Hall, Englewood Cliffs NJ, 1981.

Halstead, Maurice H. “Elements of Software Science," Elsevier: New York, 1977.

Jones, Capers. “Backfiring: Converting Lines of Code to Function Points.” IEEE
Computer, 28, No. 11, November 1995:87-88.

KnowledgePLAN 2.0 User’s Manual, Software Productivity Research, Burlington MA;
1997.

154

Maibor, David S. “Software Acquisition for the 90’s: One Big Dilemma,” Crosstalk,
July 1997.

Martin, Roger J. and Wilma M. Osborne. Guidance on Software Maintenance, U.S.
Department of Commerce, Computer Science and Technology, NBS Special
Publication 500-106, December 1983.

Martin, James and Carma McClure. “Software Maintenance: The Problem and Its
Solutions,” Prentice Hall, Englewood Cliffs NJ, 1983.

Marzo, David B. Calibration and Validation of the SAGE Software Cost/Schedule

Estimating System to United States Air Force Databases. MS Thesis,
AFIT/GCA/LSG 97S-6. School of Logistics and Acquisition Management, Air

Force Institute of Technology, Wright-Patterson AFB OH, September 1997
(ADA-329958).

McGibbon, Thomas. “A Business Case for Software Process Improvement”, Data and
Analysis Center for Software, September 1996.

Pigoski, Thomas. Maintenance, March, 1994.

PRICE-S Reference manual, Price Systems, Moorestown NJ, Martin Marietta,
1993.

SASET. Version 3.0, IBM, disk. Computer software tutorial. Martin
Marietta Corporation, Denver CO, 1990.

Schwenke, Robert S. Class handout, COST 291, Introduction to Cost Analysis. School-
of Systems and Logistics, Air Force Institute of Technology, Wright-Patterson
AFB OH, Summer Short Quarter 1992.

SEER-SEM User’s Manual 4.5, GA SEER Technologies, El Segundo CA.

SoftCost-O0 MS/DOS, Software Version 3.1, Manual Revision- 1994, Resource
Calculations Inc., Englewood CO, July 1994.

Software Maintenance and Reengineering, IEEE Computer Society Press, Los Alamitos
CA, March 1997.

Stutzke, Richard D. “Software Estimating Technology: A Survey,” CrossTalk, May
1996.

Tilley, Scott R. “Perspectives on Legacy System Reengineering,” DR A F T | Version
0.3, Reengineering Center Software Engineering Institute, Carnegie Mellon
University, Pittsburgh PA, 1995.

155

VanDoren, Edmond. “Maintenance of Operational Systems—aAn Overview,” Software
Technology Review. Kaman Sciences, Colorado Springs CO, January 1997.

VanDoren, Edmond. “Maintainability Index Technique for Measuring Program
Maintainability,” Software Technology Review. Kaman Sciences, Colorado
Springs CO, January 1997.

- Vigder M. R. and A.W. Kark. “Software Cost Estimation and Control,” National
Research Council of Canada, February 1994

Welker, Kurt D. and Paul W. Oman. "Software Maintainability Metrics Models in
Practice.” Crosstalk, Journal of Defense Software Engineering 8, 11
(November/December 1995): 19-23.

Wellman, Frank. “Software Costing: An Objective Approach to Estimating and

Controlling the Cost of Computer Software.” New York: Prentice-Hall, Inc.,
1992.

156

Vita 1* Lieutenant Kevin L. Brummert

Lieutenant Kevin L. Brummert was born on 26 October 1970 in Barberton, Ohio.
He graduated from Barberton High School in 1989. In May 1995, he graduated from The
University of Akron with a Bachelor of Science in Accountancy. He received his Air
Force commission through the Reserve Officer Training Corps Program.

Lieutenant Brummert’s first Air Force assignment was at the 88" ABW Cost
Analysis and Services Branch, Wright-Patterson AFB, Ohio from June 1995 to May
1997. While there, he served as a base level Cost Analyst.

Lieutenant Brummert then entered the Air Force Institute of Technology’s School
of Logistics and Acquisition Management Graduate Cost Analysis program in May 1997.
Upon graduation, he anticipates a follow-on assignment to the Electronic Systems Center

at Hanscom AFB, Massachusetts.

Permanent Address: 198 Shenandoah Blvd
Barberton, OH 44203

157

Vita 1% Lieutenant Philip R. Mischler, Jr.

First Lieutenant Philip Mischler, Jr. was born on 18 May 1966 in Charlotte, North
Carolina. He graduated from East Forsyth High School, North Carolina in 1984. He
enlisted in the Air Force in September 1984 and spent several years as an F-16
maintenance technician and instructor at Shaw AFB, South Carolina. He received the
degree bof Bachelor of Science from North Carolina A&T State University and was
commissioned from AFROTC Detachment 605 in 1995. After commissioning, he served .
two years as a Financial Manager at the Aerospace Systems Center at Wright-Patterson
AFB, Ohio. He then entered the School of Logistics and Acquisition Management, Air

Force Institute of Technology, in May 1997.

Permanent Address: 1908 Cartwright Drive
Kernersville, NC 27284

158

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, inciuding the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1998 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SOFTWARE SUPPORT COST ESTIMATING MODELS:
A COMPARATIVE STUDY OF MODEL CONTENT AND PARAMETER
SENSITIVITY

6. AUTHOR(S)
Kevin L. Brummert, Lieutenant, USAF
Philip Mischler, Jr, Lieutenant, USAF

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology AFIT/GCA/LAS/98S-3

2950 P Street
WPAFB OH 45433-7765

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER
SMC/FMC

2430 East El Segundo Boulevard, Suite 2010
Los Angeles, CA 90245-4687

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 Words)

This research entailed a comparison of five software estimating models: PRICE-S, SEER-SEM, SoftCost-OO, SoftEst, and SPR
KnowledgePLAN. The objective was to research the differences of the software models as related to software support cost. The
following major question areas were addressed: (1) How do the differences between the models impact the resulting cost estimates?
(2) To what degree can we explain and adjust for the differences between cost models? All items were for flight avionics of a manned
aircraft. The differences between the models significantly impact the resulting estimates. Over the five models evaluated, a range of
over $60 million occurred during a twenty year estimate. The researchers can explain the differences in the models due to the
different algorithms used, but were not able to normalize the models to achieve equivalent estimates. The researchers feel a typical
user will not be able to normalize separate models and should, therefore, concentrate on learning one or two models in detail.
Different models are more appropriate depending on the task or project being estimated.

14. Subject Terms 15. NUMBER OF PAGES
Cost Analysis, Cost Estimates, Software, Models, Cost Models, Cost Overruns, Support Cost, 172
Maintenance Costs, Monte Carlo Method, Sampling, Software Engineering

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION | 19. SECURITY 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE CLASSIFICATION uL
UNCLASSIFIED UNCLASSIFIED OF ABSTRACT ‘
UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANS! Std. 239-18
298-102

AFIT Control Number AT 17/GCA/LAS/985-3

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to determine the potential for current and future applications
of AFIT thesis research. Please return completed questionnaire to: AIR FORCE INSTITUTE
OF TECHNOLOGY/LAC, 2950 P STREET, WRIGHT-PATTERSON AFB OH 45433-7765.
Your response is important. Thank you.

1. Did this research contribute to a current research project? a. Yes b. No

2. Do you believe this research topic is significant enough that it would have been researched (or
contracted) by your organization or another agency if AFIT had not researched it?

a. Yes b. No
3. Please estimate what this research would have cost in terms of manpower and dollars if it had
been accomplished under contract or if it had been done in-house.

Man Years $

4. Whether or not you were able to establish an equivalent value for this research (in Question
3), what is your estimate of its significance?

a. Highly b. Significant c. Slightly d. Of No
Significant Significant Significance

5. Comments (Please feel free to use a separate sheet for more detailed answers and include it
with this form):

Name and Grade Organization

Position or Title Address

